从数据框架中删除重复列的最简单方法是什么?

我正在阅读一个文本文件,通过重复的列:

import pandas as pd

df=pd.read_table(fname)

列名为:

Time, Time Relative, N2, Time, Time Relative, H2, etc...

所有“时间”和“时间相对”列包含相同的数据。我想要:

Time, Time Relative, N2, H2

我所有的尝试删除,删除等,如:

df=df.T.drop_duplicates().T

导致唯一值的索引错误:

Reindexing only valid with uniquely valued index objects

对不起,我是熊猫的菜鸟。任何建议将不胜感激。


额外的细节

熊猫版本:0.9.0 Python版本:2.7.3 Windows 7 (通过Pythonxy 2.7.3.0安装)

数据文件(注:在实际文件中,列之间以制表符分隔,此处以4个空格分隔):

Time    Time Relative [s]    N2[%]    Time    Time Relative [s]    H2[ppm]
2/12/2013 9:20:55 AM    6.177    9.99268e+001    2/12/2013 9:20:55 AM    6.177    3.216293e-005    
2/12/2013 9:21:06 AM    17.689    9.99296e+001    2/12/2013 9:21:06 AM    17.689    3.841667e-005    
2/12/2013 9:21:18 AM    29.186    9.992954e+001    2/12/2013 9:21:18 AM    29.186    3.880365e-005    
... etc ...
2/12/2013 2:12:44 PM    17515.269    9.991756+001    2/12/2013 2:12:44 PM    17515.269    2.800279e-005    
2/12/2013 2:12:55 PM    17526.769    9.991754e+001    2/12/2013 2:12:55 PM    17526.769    2.880386e-005
2/12/2013 2:13:07 PM    17538.273    9.991797e+001    2/12/2013 2:13:07 PM    17538.273    3.131447e-005

当前回答

如果我没有弄错的话,下面的代码没有转置解决方案的内存问题,并且比@kalu函数的行数更少,保留任何类似名称列的第一个。

Cols = list(df.columns)
for i,item in enumerate(df.columns):
    if item in df.columns[:i]: Cols[i] = "toDROP"
df.columns = Cols
df = df.drop("toDROP",1)

其他回答

如果我没有弄错的话,下面的代码没有转置解决方案的内存问题,并且比@kalu函数的行数更少,保留任何类似名称列的第一个。

Cols = list(df.columns)
for i,item in enumerate(df.columns):
    if item in df.columns[:i]: Cols[i] = "toDROP"
df.columns = Cols
df = df.drop("toDROP",1)

以防有人还在寻找如何在Python中为Pandas数据帧的列中寻找重复值的答案,我想出了这个解决方案:

def get_dup_columns(m):
    '''
    This will check every column in data frame 
    and verify if you have duplicated columns.
    can help whenever you are cleaning big data sets of 50+ columns 
    and clean up a little  bit for you
    The result will be a list of tuples showing what columns are duplicates
    for example
    (column A, Column C)
    That means that column A is duplicated with column C
    more info go to https://wanatux.com
    '''
    headers_list = [x for x in m.columns]
    duplicate_col2 = []
    y = 0
    while y <= len(headers_list)-1:
        for x in range(1,len(headers_list)-1):
            if m[headers_list[y]].equals(m[headers_list[x]]) == False:        
                continue
            else:
                duplicate_col2.append((headers_list[y],headers_list[x]))
        headers_list.pop(0)  
    return duplicate_col2

你可以像这样强制转换定义:

duplicate_col = get_dup_columns(pd_excel)

它将显示如下结果:

 [('column a', 'column k'),
 ('column a', 'column r'),
 ('column h', 'column m'),
 ('column k', 'column r')]

虽然@Gene Burinsky的回答很好,但它有一个潜在的问题,重新分配的df可能是原始df的副本或视图。 这意味着后续的赋值如df['newcol'] = 1会生成SettingWithCopy警告,可能会失败(https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#why-does-assignment-fail-when-using-chained-indexing)。以下解决方案可以防止该问题:

duplicate_cols = df.columns[df.columns.duplicated()]
df.drop(columns=duplicate_cols, inplace=True)

听起来好像您已经知道了唯一的列名。如果是这样的话,那么df = df['时间','时间相对','N2']将有效。

如果不是,你的解决方案应该工作:

In [101]: vals = np.random.randint(0,20, (4,3))
          vals
Out[101]:
array([[ 3, 13,  0],
       [ 1, 15, 14],
       [14, 19, 14],
       [19,  5,  1]])

In [106]: df = pd.DataFrame(np.hstack([vals, vals]), columns=['Time', 'H1', 'N2', 'Time Relative', 'N2', 'Time'] )
          df
Out[106]:
   Time  H1  N2  Time Relative  N2  Time
0     3  13   0              3  13     0
1     1  15  14              1  15    14
2    14  19  14             14  19    14
3    19   5   1             19   5     1

In [107]: df.T.drop_duplicates().T
Out[107]:
   Time  H1  N2
0     3  13   0
1     1  15  14
2    14  19  14
3    19   5   1

您可能有一些特定于您的数据的东西搞砸了。如果你能提供更多关于数据的细节,我们会给予更多的帮助。

编辑: 如Andy所说,问题可能在于重复的列标题。

对于一个示例表文件'dummy.csv',我创建了:

Time    H1  N2  Time    N2  Time Relative
3   13  13  3   13  0
1   15  15  1   15  14
14  19  19  14  19  14
19  5   5   19  5   1

使用read_table提供唯一的列并正常工作:

In [151]: df2 = pd.read_table('dummy.csv')
          df2
Out[151]:
         Time  H1  N2  Time.1  N2.1  Time Relative
      0     3  13  13       3    13              0
      1     1  15  15       1    15             14
      2    14  19  19      14    19             14
      3    19   5   5      19     5              1
In [152]: df2.T.drop_duplicates().T
Out[152]:
             Time  H1  Time Relative
          0     3  13              0
          1     1  15             14
          2    14  19             14
          3    19   5              1  

如果你的版本不允许,你可以拼凑一个解决方案,使它们独一无二:

In [169]: df2 = pd.read_table('dummy.csv', header=None)
          df2
Out[169]:
              0   1   2     3   4              5
        0  Time  H1  N2  Time  N2  Time Relative
        1     3  13  13     3  13              0
        2     1  15  15     1  15             14
        3    14  19  19    14  19             14
        4    19   5   5    19   5              1
In [171]: from collections import defaultdict
          col_counts = defaultdict(int)
          col_ix = df2.first_valid_index()
In [172]: cols = []
          for col in df2.ix[col_ix]:
              cnt = col_counts[col]
              col_counts[col] += 1
              suf = '_' + str(cnt) if cnt else ''
              cols.append(col + suf)
          cols
Out[172]:
          ['Time', 'H1', 'N2', 'Time_1', 'N2_1', 'Time Relative']
In [174]: df2.columns = cols
          df2 = df2.drop([col_ix])
In [177]: df2
Out[177]:
          Time  H1  N2 Time_1 N2_1 Time Relative
        1    3  13  13      3   13             0
        2    1  15  15      1   15            14
        3   14  19  19     14   19            14
        4   19   5   5     19    5             1
In [178]: df2.T.drop_duplicates().T
Out[178]:
          Time  H1 Time Relative
        1    3  13             0
        2    1  15            14
        3   14  19            14
        4   19   5             1 

我不知道为什么吉恩·布林斯基的答案对我不起作用。我得到了相同的原始数据框架与重复的列。我的解决方法是强制选择ndarray并返回数据框架。

df = pd.DataFrame(df.values[:,~df.columns.duplicated()], columns=df.columns[~df.columns.duplicated()])