从数据框架中删除重复列的最简单方法是什么?

我正在阅读一个文本文件,通过重复的列:

import pandas as pd

df=pd.read_table(fname)

列名为:

Time, Time Relative, N2, Time, Time Relative, H2, etc...

所有“时间”和“时间相对”列包含相同的数据。我想要:

Time, Time Relative, N2, H2

我所有的尝试删除,删除等,如:

df=df.T.drop_duplicates().T

导致唯一值的索引错误:

Reindexing only valid with uniquely valued index objects

对不起,我是熊猫的菜鸟。任何建议将不胜感激。


额外的细节

熊猫版本:0.9.0 Python版本:2.7.3 Windows 7 (通过Pythonxy 2.7.3.0安装)

数据文件(注:在实际文件中,列之间以制表符分隔,此处以4个空格分隔):

Time    Time Relative [s]    N2[%]    Time    Time Relative [s]    H2[ppm]
2/12/2013 9:20:55 AM    6.177    9.99268e+001    2/12/2013 9:20:55 AM    6.177    3.216293e-005    
2/12/2013 9:21:06 AM    17.689    9.99296e+001    2/12/2013 9:21:06 AM    17.689    3.841667e-005    
2/12/2013 9:21:18 AM    29.186    9.992954e+001    2/12/2013 9:21:18 AM    29.186    3.880365e-005    
... etc ...
2/12/2013 2:12:44 PM    17515.269    9.991756+001    2/12/2013 2:12:44 PM    17515.269    2.800279e-005    
2/12/2013 2:12:55 PM    17526.769    9.991754e+001    2/12/2013 2:12:55 PM    17526.769    2.880386e-005
2/12/2013 2:13:07 PM    17538.273    9.991797e+001    2/12/2013 2:13:07 PM    17538.273    3.131447e-005

当前回答

以防有人还在寻找如何在Python中为Pandas数据帧的列中寻找重复值的答案,我想出了这个解决方案:

def get_dup_columns(m):
    '''
    This will check every column in data frame 
    and verify if you have duplicated columns.
    can help whenever you are cleaning big data sets of 50+ columns 
    and clean up a little  bit for you
    The result will be a list of tuples showing what columns are duplicates
    for example
    (column A, Column C)
    That means that column A is duplicated with column C
    more info go to https://wanatux.com
    '''
    headers_list = [x for x in m.columns]
    duplicate_col2 = []
    y = 0
    while y <= len(headers_list)-1:
        for x in range(1,len(headers_list)-1):
            if m[headers_list[y]].equals(m[headers_list[x]]) == False:        
                continue
            else:
                duplicate_col2.append((headers_list[y],headers_list[x]))
        headers_list.pop(0)  
    return duplicate_col2

你可以像这样强制转换定义:

duplicate_col = get_dup_columns(pd_excel)

它将显示如下结果:

 [('column a', 'column k'),
 ('column a', 'column r'),
 ('column h', 'column m'),
 ('column k', 'column r')]

其他回答

虽然@Gene Burinsky的回答很好,但它有一个潜在的问题,重新分配的df可能是原始df的副本或视图。 这意味着后续的赋值如df['newcol'] = 1会生成SettingWithCopy警告,可能会失败(https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#why-does-assignment-fail-when-using-chained-indexing)。以下解决方案可以防止该问题:

duplicate_cols = df.columns[df.columns.duplicated()]
df.drop(columns=duplicate_cols, inplace=True)

下面的方法将识别dupe列,以检查最初构建数据框架时出错的地方。

dupes = pd.DataFrame(df.columns)
dupes[dupes.duplicated()]

下面是一个基于重复列名删除列的单行解决方案:

df = df.loc[:,~df.columns.duplicated()].copy()

工作原理:

假设数据帧的列是['alpha','beta','alpha']

df.columns. replicated()返回一个布尔数组:每一列为True或False。如果它为False,则列名在此之前是唯一的,如果它为True,则列名在之前被复制。例如,使用给定的示例,返回值将是[False,False,True]。

Pandas允许使用布尔值进行索引,因此它只选择True值。因为我们想要保留未复制的列,我们需要翻转上面的布尔数组(即[True, True, False] = ~[False,False,True])

最后,df。loc[:,[True,True,False]]使用前面提到的索引功能只选择非重复的列。

最后的.copy()用于复制数据帧,以(主要)避免在稍后尝试修改现有数据帧时出错。

注意:上面只检查列的名称,而不是列的值。

删除重复索引

因为它足够相似,所以在索引上做同样的事情:

df = df.loc[~df.index.duplicated(),:].copy()

通过检查值而不换位来删除重复项

更新和警告:请小心应用此。根据评论中dr . what提供的反例,这种解决方案可能在所有情况下都没有理想的结果。

df = df.loc[:,~df.apply(lambda x: x.duplicated(),axis=1).all()].copy()

这避免了转位的问题。它快吗?不。这有用吗?是的。来,试试这个:

# create a large(ish) dataframe
ldf = pd.DataFrame(np.random.randint(0,100,size= (736334,1312))) 


#to see size in gigs
#ldf.memory_usage().sum()/1e9 #it's about 3 gigs

# duplicate a column
ldf.loc[:,'dup'] = ldf.loc[:,101]

# take out duplicated columns by values
ldf = ldf.loc[:,~ldf.apply(lambda x: x.duplicated(),axis=1).all()].copy()

快速和简单的方法删除复制列的值:

df = df.T.drop_duplicates().T

更多信息:Pandas DataFrame drop_duplicate manual。

简单的列比较是按值检查重复列的最有效方法(就内存和时间而言)。这里有一个例子:

import numpy as np
import pandas as pd
from itertools import combinations as combi

df = pd.DataFrame(np.random.uniform(0,1, (100,4)), columns=['a','b','c','d'])
df['a'] = df['d'].copy()  # column 'a' is equal to column 'd'

# to keep the first
dupli_cols = [cc[1] for cc in combi(df.columns, r=2) if (df[cc[0]] == df[cc[1]]).all()]

# to keep the last
dupli_cols = [cc[0] for cc in combi(df.columns, r=2) if (df[cc[0]] == df[cc[1]]).all()]
            
df = df.drop(columns=dupli_cols)