Python允许从给定基数的字符串中轻松创建一个整数

int(str, base). 

我想执行相反的操作:从一个整数创建一个字符串, 例如,我想要一些函数int2base(num, base),这样:

int(int2base(x, b), b) == x

函数名/参数的顺序并不重要。

对于int()将接受的任何以b为底的数字x。

这是一个很容易写的函数:事实上,它比在这个问题中描述它更容易。然而,我觉得我一定是错过了什么。

我知道函数bin, oct, hex,但我不能使用它们的几个原因:

这些函数在旧版本的Python中不可用,我需要与(2.2)兼容 我想要一个通解对于不同的碱都可以用同样的方式表示 我想允许2 8 16以外的底数

相关的

Python优雅的int(string, base)逆函数 在python中使用递归的整数到base-x系统 Python中的Base 62转换 如何在Python中将整数转换为最短的url安全字符串?


当前回答

def base_changer(number,base):
    buff=97+abs(base-10)
    dic={};buff2='';buff3=10
    for i in range(97,buff+1):
        dic[buff3]=chr(i)
        buff3+=1   
    while(number>=base):
        mod=int(number%base)
        number=int(number//base)
        if (mod) in dic.keys():
            buff2+=dic[mod]
            continue
        buff2+=str(mod)
    if (number) in dic.keys():
        buff2+=dic[number]
    else:
        buff2+=str(number)

    return buff2[::-1]   

其他回答

递归

我将投票最多的答案简化为:

BS="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def to_base(n, b): 
    return "0" if not n else to_base(n//b, b).lstrip("0") + BS[n%b]

对于RuntimeError有相同的建议:对于非常大的整数和负数,在cmp中超过最大递归深度。(你可以使用setrecursionlimit(new_limit))

迭代

为了避免递归问题:

BS="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def to_base(s, b):
    res = ""
    while s:
        res+=BS[s%b]
        s//= b
    return res[::-1] or "0"

令人惊讶的是,人们给出的答案只能转换成小基数(比英语字母表的长度还小)。没有人试图给出一个可以转换为2到无穷任意底数的解。

这里有一个超级简单的解决方案:

def numberToBase(n, b):
    if n == 0:
        return [0]
    digits = []
    while n:
        digits.append(int(n % b))
        n //= b
    return digits[::-1]

所以如果你需要把一个超级大的数转换成577的底数,

numberToBase(67854 ** 15 - 102,577),将为您提供正确的解决方案: [4, 473, 131, 96, 431, 285, 524, 486, 28, 23, 16, 82, 292, 538, 149, 25, 41, 483, 100, 517, 131, 28, 0, 435, 197, 264, 455],

你以后可以把它转换成任何你想要的基数

at some point of time you will notice that sometimes there is no built-in library function to do things that you want, so you need to write your own. If you disagree, post you own solution with a built-in function which can convert a base 10 number to base 577. this is due to lack of understanding what a number in some base means. I encourage you to think for a little bit why base in your method works only for n <= 36. Once you are done, it will be obvious why my function returns a list and has the signature it has.

def base_changer(number,base):
    buff=97+abs(base-10)
    dic={};buff2='';buff3=10
    for i in range(97,buff+1):
        dic[buff3]=chr(i)
        buff3+=1   
    while(number>=base):
        mod=int(number%base)
        number=int(number//base)
        if (mod) in dic.keys():
            buff2+=dic[mod]
            continue
        buff2+=str(mod)
    if (number) in dic.keys():
        buff2+=dic[number]
    else:
        buff2+=str(number)

    return buff2[::-1]   

这是一个老问题,但我想分享我的看法,因为我觉得它比其他答案更简单(适用于2到36进制):

def intStr(n,base=10):
    if n < 0   : return "-" + intStr(-n,base)         # handle negatives
    if n < base: return chr([48,55][n>9] + n)         # 48 => "0"..., 65 => "A"...
    return intStr(n//base,base) + intStr(n%base,base) # recurse for multiple digits

我提出了一个“非优化”的2到9基的解决方案:

  def to_base(N, base=2):
    N_in_base = ''
    while True:
        N_in_base = str(N % base) + N_in_base
        N //= base
        if N == 0:
            break
    return N_in_base

这个解决方案不需要反转最终结果,但实际上并没有优化。请参考以下答案了解原因:https://stackoverflow.com/a/37133870/7896998