我正在寻找优先级队列或堆数据结构的.NET实现

Priority queues are data structures that provide more flexibility than simple sorting, because they allow new elements to enter a system at arbitrary intervals. It is much more cost-effective to insert a new job into a priority queue than to re-sort everything on each such arrival. The basic priority queue supports three primary operations: Insert(Q,x). Given an item x with key k, insert it into the priority queue Q. Find-Minimum(Q). Return a pointer to the item whose key value is smaller than any other key in the priority queue Q. Delete-Minimum(Q). Remove the item from the priority queue Q whose key is minimum

除非我找错地方了,否则框架里没有。有谁知道好的吗,还是我自己卷?


当前回答

下面是我对.NET堆的尝试

public abstract class Heap<T> : IEnumerable<T>
{
    private const int InitialCapacity = 0;
    private const int GrowFactor = 2;
    private const int MinGrow = 1;

    private int _capacity = InitialCapacity;
    private T[] _heap = new T[InitialCapacity];
    private int _tail = 0;

    public int Count { get { return _tail; } }
    public int Capacity { get { return _capacity; } }

    protected Comparer<T> Comparer { get; private set; }
    protected abstract bool Dominates(T x, T y);

    protected Heap() : this(Comparer<T>.Default)
    {
    }

    protected Heap(Comparer<T> comparer) : this(Enumerable.Empty<T>(), comparer)
    {
    }

    protected Heap(IEnumerable<T> collection)
        : this(collection, Comparer<T>.Default)
    {
    }

    protected Heap(IEnumerable<T> collection, Comparer<T> comparer)
    {
        if (collection == null) throw new ArgumentNullException("collection");
        if (comparer == null) throw new ArgumentNullException("comparer");

        Comparer = comparer;

        foreach (var item in collection)
        {
            if (Count == Capacity)
                Grow();

            _heap[_tail++] = item;
        }

        for (int i = Parent(_tail - 1); i >= 0; i--)
            BubbleDown(i);
    }

    public void Add(T item)
    {
        if (Count == Capacity)
            Grow();

        _heap[_tail++] = item;
        BubbleUp(_tail - 1);
    }

    private void BubbleUp(int i)
    {
        if (i == 0 || Dominates(_heap[Parent(i)], _heap[i])) 
            return; //correct domination (or root)

        Swap(i, Parent(i));
        BubbleUp(Parent(i));
    }

    public T GetMin()
    {
        if (Count == 0) throw new InvalidOperationException("Heap is empty");
        return _heap[0];
    }

    public T ExtractDominating()
    {
        if (Count == 0) throw new InvalidOperationException("Heap is empty");
        T ret = _heap[0];
        _tail--;
        Swap(_tail, 0);
        BubbleDown(0);
        return ret;
    }

    private void BubbleDown(int i)
    {
        int dominatingNode = Dominating(i);
        if (dominatingNode == i) return;
        Swap(i, dominatingNode);
        BubbleDown(dominatingNode);
    }

    private int Dominating(int i)
    {
        int dominatingNode = i;
        dominatingNode = GetDominating(YoungChild(i), dominatingNode);
        dominatingNode = GetDominating(OldChild(i), dominatingNode);

        return dominatingNode;
    }

    private int GetDominating(int newNode, int dominatingNode)
    {
        if (newNode < _tail && !Dominates(_heap[dominatingNode], _heap[newNode]))
            return newNode;
        else
            return dominatingNode;
    }

    private void Swap(int i, int j)
    {
        T tmp = _heap[i];
        _heap[i] = _heap[j];
        _heap[j] = tmp;
    }

    private static int Parent(int i)
    {
        return (i + 1)/2 - 1;
    }

    private static int YoungChild(int i)
    {
        return (i + 1)*2 - 1;
    }

    private static int OldChild(int i)
    {
        return YoungChild(i) + 1;
    }

    private void Grow()
    {
        int newCapacity = _capacity*GrowFactor + MinGrow;
        var newHeap = new T[newCapacity];
        Array.Copy(_heap, newHeap, _capacity);
        _heap = newHeap;
        _capacity = newCapacity;
    }

    public IEnumerator<T> GetEnumerator()
    {
        return _heap.Take(Count).GetEnumerator();
    }

    IEnumerator IEnumerable.GetEnumerator()
    {
        return GetEnumerator();
    }
}

public class MaxHeap<T> : Heap<T>
{
    public MaxHeap()
        : this(Comparer<T>.Default)
    {
    }

    public MaxHeap(Comparer<T> comparer)
        : base(comparer)
    {
    }

    public MaxHeap(IEnumerable<T> collection, Comparer<T> comparer)
        : base(collection, comparer)
    {
    }

    public MaxHeap(IEnumerable<T> collection) : base(collection)
    {
    }

    protected override bool Dominates(T x, T y)
    {
        return Comparer.Compare(x, y) >= 0;
    }
}

public class MinHeap<T> : Heap<T>
{
    public MinHeap()
        : this(Comparer<T>.Default)
    {
    }

    public MinHeap(Comparer<T> comparer)
        : base(comparer)
    {
    }

    public MinHeap(IEnumerable<T> collection) : base(collection)
    {
    }

    public MinHeap(IEnumerable<T> collection, Comparer<T> comparer)
        : base(collection, comparer)
    {
    }

    protected override bool Dominates(T x, T y)
    {
        return Comparer.Compare(x, y) <= 0;
    }
}

一些测试:

[TestClass]
public class HeapTests
{
    [TestMethod]
    public void TestHeapBySorting()
    {
        var minHeap = new MinHeap<int>(new[] {9, 8, 4, 1, 6, 2, 7, 4, 1, 2});
        AssertHeapSort(minHeap, minHeap.OrderBy(i => i).ToArray());

        minHeap = new MinHeap<int> { 7, 5, 1, 6, 3, 2, 4, 1, 2, 1, 3, 4, 7 };
        AssertHeapSort(minHeap, minHeap.OrderBy(i => i).ToArray());

        var maxHeap = new MaxHeap<int>(new[] {1, 5, 3, 2, 7, 56, 3, 1, 23, 5, 2, 1});
        AssertHeapSort(maxHeap, maxHeap.OrderBy(d => -d).ToArray());

        maxHeap = new MaxHeap<int> {2, 6, 1, 3, 56, 1, 4, 7, 8, 23, 4, 5, 7, 34, 1, 4};
        AssertHeapSort(maxHeap, maxHeap.OrderBy(d => -d).ToArray());
    }

    private static void AssertHeapSort(Heap<int> heap, IEnumerable<int> expected)
    {
        var sorted = new List<int>();
        while (heap.Count > 0)
            sorted.Add(heap.ExtractDominating());

        Assert.IsTrue(sorted.SequenceEqual(expected));
    }
}

其他回答

你可能会喜欢C5泛型集合库中的IntervalHeap。引用用户指南

类IntervalHeap<T>使用存储为对数组的间隔堆实现接口IPriorityQueue<T>。FindMin和 FindMax操作和索引器的get-访问器花费的时间为O(1)。DeleteMin, DeleteMax、Add和Update操作,以及索引器的集访问器,都需要时间 O(log n)。与普通优先级队列相比,间隔堆提供了两个最小优先级队列 同样效率的最大操作。

API非常简单

> var heap = new C5.IntervalHeap<int>();
> heap.Add(10);
> heap.Add(5);
> heap.FindMin();
5

从Nuget https://www.nuget.org/packages/C5或GitHub https://github.com/sestoft/C5/安装

我在Julian Bucknall的博客(http://www.boyet.com/Articles/PriorityQueueCSharp3.html)上找到了一个

我们稍微修改了一下,以便队列中优先级低的项目最终会随着时间的推移“上升”到顶部,这样它们就不会挨饿了。

AlgoKit

我写了一个名为AlgoKit的开源库,可以通过NuGet获得。它包含:

隐式d-ary堆(ArrayHeap), 二项堆, 配对堆。

代码已经经过了广泛的测试。我强烈建议你试一试。

例子

var comparer = Comparer<int>.Default;
var heap = new PairingHeap<int, string>(comparer);

heap.Add(3, "your");
heap.Add(5, "of");
heap.Add(7, "disturbing.");
heap.Add(2, "find");
heap.Add(1, "I");
heap.Add(6, "faith");
heap.Add(4, "lack");

while (!heap.IsEmpty)
    Console.WriteLine(heap.Pop().Value);

为什么有三堆?

实现的最佳选择强烈依赖于输入-正如Larkin, Sen和Tarjan在优先队列的回归基础经验研究中所显示的,arXiv:1403.0252v1 [cs.DS]。他们测试了隐式d-ary堆、配对堆、斐波那契堆、二项式堆、显式d-ary堆、排名配对堆、震动堆、违反堆、排名放松的弱堆和严格斐波那契堆。

AlgoKit具有三种类型的堆,在测试中似乎是最有效的。

关于选择的提示

对于数量相对较少的元素,您可能会对使用隐式堆感兴趣,特别是第四元堆(隐式4元)。在操作较大堆大小的情况下,像二项式堆和配对堆这样的平摊结构应该执行得更好。

在Java Collections框架中的Java实现(Java .util. priorityqueue)上使用Java到c#的转换器,或者更智能地使用算法和核心代码,并将其插入到您自己制作的c#类中,该类遵循c# Collections框架用于队列的API,或者至少是Collections。

. net 6+:正如@rustyx评论的那样,. net 6添加了System.Collections.Generic。PriorityQueue < TElement, TPriority >类。FWIW是开源的,用c#实现的。

早期的。net核心版本和。net框架:微软在。net框架中编写(并在线共享)了2个内部的PriorityQueue类。然而,正如@ mathumum -mut所评论的那样,其中有一个错误(SO社区当然已经提供了修复):微软内部PriorityQueue<T>?