我是一个老派的MySQL用户,总是更喜欢JOIN而不是子查询。但是现在每个人都用子查询,我讨厌它;我不知道为什么。

我缺乏理论知识来判断是否有任何不同。子查询是否与JOIN一样好,因此没有什么可担心的?


当前回答

我认为在引用的答案中没有强调的是重复的问题和可能由特定(使用)案例引起的有问题的结果。

(尽管马塞洛·坎托斯提到过)

我将引用斯坦福大学Lagunita SQL课程的例子。

学生表

+------+--------+------+--------+
| sID  | sName  | GPA  | sizeHS |
+------+--------+------+--------+
|  123 | Amy    |  3.9 |   1000 |
|  234 | Bob    |  3.6 |   1500 |
|  345 | Craig  |  3.5 |    500 |
|  456 | Doris  |  3.9 |   1000 |
|  567 | Edward |  2.9 |   2000 |
|  678 | Fay    |  3.8 |    200 |
|  789 | Gary   |  3.4 |    800 |
|  987 | Helen  |  3.7 |    800 |
|  876 | Irene  |  3.9 |    400 |
|  765 | Jay    |  2.9 |   1500 |
|  654 | Amy    |  3.9 |   1000 |
|  543 | Craig  |  3.4 |   2000 |
+------+--------+------+--------+

应用表

(向特定大学及专业申请)

+------+----------+----------------+----------+
| sID  | cName    | major          | decision |
+------+----------+----------------+----------+
|  123 | Stanford | CS             | Y        |
|  123 | Stanford | EE             | N        |
|  123 | Berkeley | CS             | Y        |
|  123 | Cornell  | EE             | Y        |
|  234 | Berkeley | biology        | N        |
|  345 | MIT      | bioengineering | Y        |
|  345 | Cornell  | bioengineering | N        |
|  345 | Cornell  | CS             | Y        |
|  345 | Cornell  | EE             | N        |
|  678 | Stanford | history        | Y        |
|  987 | Stanford | CS             | Y        |
|  987 | Berkeley | CS             | Y        |
|  876 | Stanford | CS             | N        |
|  876 | MIT      | biology        | Y        |
|  876 | MIT      | marine biology | N        |
|  765 | Stanford | history        | Y        |
|  765 | Cornell  | history        | N        |
|  765 | Cornell  | psychology     | Y        |
|  543 | MIT      | CS             | N        |
+------+----------+----------------+----------+

让我们试着找出申请计算机科学专业的学生的平均绩点(不论大学)

使用子查询:

select GPA from Student where sID in (select sID from Apply where major = 'CS');

+------+
| GPA  |
+------+
|  3.9 |
|  3.5 |
|  3.7 |
|  3.9 |
|  3.4 |
+------+

这个结果集的平均值是:

select avg(GPA) from Student where sID in (select sID from Apply where major = 'CS');

+--------------------+
| avg(GPA)           |
+--------------------+
| 3.6800000000000006 |
+--------------------+

使用连接:

select GPA from Student, Apply where Student.sID = Apply.sID and Apply.major = 'CS';

+------+
| GPA  |
+------+
|  3.9 |
|  3.9 |
|  3.5 |
|  3.7 |
|  3.7 |
|  3.9 |
|  3.4 |
+------+

该结果集的平均值:

select avg(GPA) from Student, Apply where Student.sID = Apply.sID and Apply.major = 'CS';

+-------------------+
| avg(GPA)          |
+-------------------+
| 3.714285714285714 |
+-------------------+

It is obvious that the second attempt yields misleading results in our use case, given that it counts duplicates for the computation of the average value. It is also evident that usage of distinct with the join - based statement will not eliminate the problem, given that it will erroneously keep one out of three occurrences of the 3.9 score. The correct case is to account for TWO (2) occurrences of the 3.9 score given that we actually have TWO (2) students with that score that comply with our query criteria.

在某些情况下,除了性能问题,子查询似乎是最安全的方法。

其他回答

子查询能够动态地计算聚合函数。 例如,找到这本书的最低价格,并得到所有以这个价格出售的书。 1)使用子查询:

SELECT titles, price
FROM Books, Orders
WHERE price = 
(SELECT MIN(price)
 FROM Orders) AND (Books.ID=Orders.ID);

2)使用join

SELECT MIN(price)
     FROM Orders;
-----------------
2.99

SELECT titles, price
FROM Books b
INNER JOIN  Orders o
ON b.ID = o.ID
WHERE o.price = 2.99;

使用EXPLAIN查看数据库如何对数据执行查询。这个答案中有一个很大的“视情况而定”……

PostgreSQL可以将子查询重写为连接,或将连接重写为子查询,如果它认为其中一个比另一个快。这完全取决于数据、索引、相关性、数据量、查询等。

MSDN文档SQL Server说

Many Transact-SQL statements that include subqueries can be alternatively formulated as joins. Other questions can be posed only with subqueries. In Transact-SQL, there is usually no performance difference between a statement that includes a subquery and a semantically equivalent version that does not. However, in some cases where existence must be checked, a join yields better performance. Otherwise, the nested query must be processed for each result of the outer query to ensure elimination of duplicates. In such cases, a join approach would yield better results.

所以如果你需要

select * from t1 where exists select * from t2 where t2.parent=t1.id

尝试使用join代替。在其他情况下,这没有什么区别。

我说:为子查询创建函数可以消除混乱的问题,并允许您为子查询实现额外的逻辑。因此,我建议尽可能为子查询创建函数。

代码中的混乱是一个大问题,几十年来业界一直在努力避免它。

在大多数情况下,join比子查询快,子查询比子查询快的情况非常罕见。

在join中,RDBMS可以为您的查询创建一个更好的执行计划,并可以预测应该加载哪些数据来处理并节省时间,不像子查询,它将运行所有的查询并加载所有的数据来进行处理。

子查询的好处是它们比join更可读:这就是为什么大多数新学习SQL的人更喜欢它们;这是简单的方法;但是当涉及到性能时,join在大多数情况下更好,尽管它们也不难读。

MySQL版本:5.5.28-0ubuntu0.12.04.2-log

在我的印象中,JOIN总是比MySQL中的子查询更好,但EXPLAIN是更好的判断方式。下面是一个子查询比join更好的例子。

这是我的查询与3个子查询:

EXPLAIN SELECT vrl.list_id,vrl.ontology_id,vrl.position,l.name AS list_name, vrlih.position AS previous_position, vrl.moved_date 
FROM `vote-ranked-listory` vrl 
INNER JOIN lists l ON l.list_id = vrl.list_id 
INNER JOIN `vote-ranked-list-item-history` vrlih ON vrl.list_id = vrlih.list_id AND vrl.ontology_id=vrlih.ontology_id AND vrlih.type='PREVIOUS_POSITION' 
INNER JOIN list_burial_state lbs ON lbs.list_id = vrl.list_id AND lbs.burial_score < 0.5 
WHERE vrl.position <= 15 AND l.status='ACTIVE' AND l.is_public=1 AND vrl.ontology_id < 1000000000 
 AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=43) IS NULL 
 AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=55) IS NULL 
 AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=246403) IS NOT NULL 
ORDER BY vrl.moved_date DESC LIMIT 200;

解释说明:

+----+--------------------+----------+--------+-----------------------------------------------------+--------------+---------+-------------------------------------------------+------+--------------------------+
| id | select_type        | table    | type   | possible_keys                                       | key          | key_len | ref                                             | rows | Extra                    |
+----+--------------------+----------+--------+-----------------------------------------------------+--------------+---------+-------------------------------------------------+------+--------------------------+
|  1 | PRIMARY            | vrl      | index  | PRIMARY                                             | moved_date   | 8       | NULL                                            |  200 | Using where              |
|  1 | PRIMARY            | l        | eq_ref | PRIMARY,status,ispublic,idx_lookup,is_public_status | PRIMARY      | 4       | ranker.vrl.list_id                              |    1 | Using where              |
|  1 | PRIMARY            | vrlih    | eq_ref | PRIMARY                                             | PRIMARY      | 9       | ranker.vrl.list_id,ranker.vrl.ontology_id,const |    1 | Using where              |
|  1 | PRIMARY            | lbs      | eq_ref | PRIMARY,idx_list_burial_state,burial_score          | PRIMARY      | 4       | ranker.vrl.list_id                              |    1 | Using where              |
|  4 | DEPENDENT SUBQUERY | list_tag | ref    | list_tag_key,list_id,tag_id                         | list_tag_key | 9       | ranker.l.list_id,const                          |    1 | Using where; Using index |
|  3 | DEPENDENT SUBQUERY | list_tag | ref    | list_tag_key,list_id,tag_id                         | list_tag_key | 9       | ranker.l.list_id,const                          |    1 | Using where; Using index |
|  2 | DEPENDENT SUBQUERY | list_tag | ref    | list_tag_key,list_id,tag_id                         | list_tag_key | 9       | ranker.l.list_id,const                          |    1 | Using where; Using index |
+----+--------------------+----------+--------+-----------------------------------------------------+--------------+---------+-------------------------------------------------+------+--------------------------+

使用join的相同查询是:

EXPLAIN SELECT vrl.list_id,vrl.ontology_id,vrl.position,l.name AS list_name, vrlih.position AS previous_position, vrl.moved_date 
FROM `vote-ranked-listory` vrl 
INNER JOIN lists l ON l.list_id = vrl.list_id 
INNER JOIN `vote-ranked-list-item-history` vrlih ON vrl.list_id = vrlih.list_id AND vrl.ontology_id=vrlih.ontology_id AND vrlih.type='PREVIOUS_POSITION' 
INNER JOIN list_burial_state lbs ON lbs.list_id = vrl.list_id AND lbs.burial_score < 0.5 
LEFT JOIN list_tag lt1 ON lt1.list_id = vrl.list_id AND lt1.tag_id = 43 
LEFT JOIN list_tag lt2 ON lt2.list_id = vrl.list_id AND lt2.tag_id = 55 
INNER JOIN list_tag lt3 ON lt3.list_id = vrl.list_id AND lt3.tag_id = 246403 
WHERE vrl.position <= 15 AND l.status='ACTIVE' AND l.is_public=1 AND vrl.ontology_id < 1000000000 
AND lt1.list_id IS NULL AND lt2.tag_id IS NULL 
ORDER BY vrl.moved_date DESC LIMIT 200;

输出为:

+----+-------------+-------+--------+-----------------------------------------------------+--------------+---------+---------------------------------------------+------+----------------------------------------------+
| id | select_type | table | type   | possible_keys                                       | key          | key_len | ref                                         | rows | Extra                                        |
+----+-------------+-------+--------+-----------------------------------------------------+--------------+---------+---------------------------------------------+------+----------------------------------------------+
|  1 | SIMPLE      | lt3   | ref    | list_tag_key,list_id,tag_id                         | tag_id       | 5       | const                                       | 2386 | Using where; Using temporary; Using filesort |
|  1 | SIMPLE      | l     | eq_ref | PRIMARY,status,ispublic,idx_lookup,is_public_status | PRIMARY      | 4       | ranker.lt3.list_id                          |    1 | Using where                                  |
|  1 | SIMPLE      | vrlih | ref    | PRIMARY                                             | PRIMARY      | 4       | ranker.lt3.list_id                          |  103 | Using where                                  |
|  1 | SIMPLE      | vrl   | ref    | PRIMARY                                             | PRIMARY      | 8       | ranker.lt3.list_id,ranker.vrlih.ontology_id |   65 | Using where                                  |
|  1 | SIMPLE      | lt1   | ref    | list_tag_key,list_id,tag_id                         | list_tag_key | 9       | ranker.lt3.list_id,const                    |    1 | Using where; Using index; Not exists         |
|  1 | SIMPLE      | lbs   | eq_ref | PRIMARY,idx_list_burial_state,burial_score          | PRIMARY      | 4       | ranker.vrl.list_id                          |    1 | Using where                                  |
|  1 | SIMPLE      | lt2   | ref    | list_tag_key,list_id,tag_id                         | list_tag_key | 9       | ranker.lt3.list_id,const                    |    1 | Using where; Using index                     |
+----+-------------+-------+--------+-----------------------------------------------------+--------------+---------+---------------------------------------------+------+----------------------------------------------+

rows列的比较表明了差异,使用join的查询使用的是using temporary;使用filesort。

当然,当我运行这两个查询时,第一个查询在0.02秒内完成,第二个查询甚至在1分钟后都没有完成,所以EXPLAIN正确地解释了这些查询。

如果我在list_tag表上没有INNER JOIN,即如果我删除

AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=246403) IS NOT NULL  

从第一个查询和相应的:

INNER JOIN list_tag lt3 ON lt3.list_id = vrl.list_id AND lt3.tag_id = 246403

从第二个查询开始,那么EXPLAIN为两个查询返回相同的行数,并且这两个查询的运行速度相同。