下面的位运算符在现实世界中有哪些用例?

和 XOR 不 或 左/右转


当前回答

它们主要用于位操作(惊喜)。下面是在PHP代码库中找到的一些实际示例。

字符编码:

if (s <= 0 && (c & ~MBFL_WCSPLANE_MASK) == MBFL_WCSPLANE_KOI8R) {

数据结构:

ar_flags = other->ar_flags & ~SPL_ARRAY_INT_MASK;

数据库驱动程序:

dbh->transaction_flags &= ~(PDO_TRANS_ACCESS_MODE^PDO_TRANS_READONLY);

编译器实现:

opline->extended_value = (opline->extended_value & ~ZEND_FETCH_CLASS_MASK) | ZEND_FETCH_CLASS_INTERFACE;

其他回答

我们使用位标记,使会话较小的登录权限在我们的内部网站。

我在为CMS实现安全模型时使用了按位操作。如果用户属于适当的组,就可以访问它的页面。一个用户可以在多个组中,因此我们需要检查用户组和页面组之间是否有交集。因此,我们为每个组分配了一个唯一的2次方标识符,例如:

Group A = 1 --> 00000001
Group B = 2 --> 00000010
Group C = 3 --> 00000100

我们将这些值一起OR,并将值(作为单个int)存储在页面中。例如,如果一个页面可以被a组和B组访问,我们存储值3(二进制是00000011)作为页面访问控制。同样,我们将or组标识符的值存储给用户,以表示用户所在的组。

因此,要检查给定用户是否可以访问给定页面,只需将这些值与运算在一起,并检查该值是否非零。这是非常快的,因为这个检查是在一条指令中实现的,没有循环,没有数据库往返。

似乎没有人提到定点数学。

(是的,我老了,好吗?)

Bit fields (flags) They're the most efficient way of representing something whose state is defined by several "yes or no" properties. ACLs are a good example; if you have let's say 4 discrete permissions (read, write, execute, change policy), it's better to store this in 1 byte rather than waste 4. These can be mapped to enumeration types in many languages for added convenience. Communication over ports/sockets Always involves checksums, parity, stop bits, flow control algorithms, and so on, which usually depend on the logic values of individual bytes as opposed to numeric values, since the medium may only be capable of transmitting one bit at a time. Compression, Encryption Both of these are heavily dependent on bitwise algorithms. Look at the deflate algorithm for an example - everything is in bits, not bytes. Finite State Machines I'm speaking primarily of the kind embedded in some piece of hardware, although they can be found in software too. These are combinatorial in nature - they might literally be getting "compiled" down to a bunch of logic gates, so they have to be expressed as AND, OR, NOT, etc. Graphics There's hardly enough space here to get into every area where these operators are used in graphics programming. XOR (or ^) is particularly interesting here because applying the same input a second time will undo the first. Older GUIs used to rely on this for selection highlighting and other overlays, in order to eliminate the need for costly redraws. They're still useful in slow graphics protocols (i.e. remote desktop).

这些只是我最先想到的几个例子——这不是一个详尽的清单。

Bitwise operators are useful for looping arrays which length is power of 2. As many people mentioned, bitwise operators are extremely useful and are used in Flags, Graphics, Networking, Encryption. Not only that, but they are extremely fast. My personal favorite use is to loop an array without conditionals. Suppose you have a zero-index based array(e.g. first element's index is 0) and you need to loop it indefinitely. By indefinitely I mean going from first element to last and returning to first. One way to implement this is:

int[] arr = new int[8];
int i = 0;
while (true) {
    print(arr[i]);
    i = i + 1;
    if (i >= arr.length) 
        i = 0;
}

这是最简单的方法,如果你想避免if语句,你可以像这样使用模方法:

int[] arr = new int[8];
int i = 0;
while (true) {
    print(arr[i]);
    i = i + 1;
    i = i % arr.length;
}

这两种方法的缺点是,模运算符是昂贵的,因为它在整数除法后寻找余数。第一个方法在每次迭代中运行if语句。然而,如果你的数组长度是2的幂,你可以很容易地生成一个像0 ..长度- 1,使用&(位和)操作符,如I & Length。知道了这些,上面的代码就变成了

int[] arr = new int[8];
int i = 0;
while (true){
    print(arr[i]);
    i = i + 1;
    i = i & (arr.length - 1);
}

下面是它的工作原理。在二进制格式中,所有2的幂减去1的数都只用1表示。例如,二进制的3是11,7是111,15是1111,等等,你懂的。现在,如果你用任意一个数对一个只由1组成的二进制数,会发生什么?假设我们这样做:

num & 7;

如果num小于或等于7,那么结果将是num,因为每个加1的&-ed就是它自己。如果num大于7,在&操作期间,计算机将考虑7的前导零,当然,在&操作后,这些前导零将保持为零,只有后面的部分将保留。比如二进制的9和7

1001 & 0111

结果将是0001,它是十进制的1,并定位数组中的第二个元素。