我尝试在基于经纬度查找距离中实现公式。applet对我正在测试的两点很好:

但是我的代码没有工作。

from math import sin, cos, sqrt, atan2

R = 6373.0

lat1 = 52.2296756
lon1 = 21.0122287
lat2 = 52.406374
lon2 = 16.9251681

dlon = lon2 - lon1
dlat = lat2 - lat1
a = (sin(dlat/2))**2 + cos(lat1) * cos(lat2) * (sin(dlon/2))**2
c = 2 * atan2(sqrt(a), sqrt(1-a))
distance = R * c

print "Result", distance
print "Should be", 278.546

它返回距离5447.05546147。为什么?


注意,如果你只是需要一种快速简单的方法来找到两点之间的距离,我强烈建议使用Kurt回答中描述的方法,而不是重新实现haversine,查看他的帖子来了解基本原理。

这个答案只关注OP遇到的特定bug。


这是因为在Python中,所有的三角函数都使用弧度,而不是度。

您可以手动将数字转换为弧度,或使用数学模块中的radians函数:

from math import sin, cos, sqrt, atan2, radians

# Approximate radius of earth in km
R = 6373.0

lat1 = radians(52.2296756)
lon1 = radians(21.0122287)
lat2 = radians(52.406374)
lon2 = radians(16.9251681)

dlon = lon2 - lon1
dlat = lat2 - lat1

a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))

distance = R * c

print("Result: ", distance)
print("Should be: ", 278.546, "km")

距离现在返回正确的值278.545589351 km。


对于像我这样通过搜索引擎来到这里的人,以及正在寻找开箱即用的解决方案的人,我建议安装mpu。通过pip Install mpu——user安装它,然后像这样使用它来获得haversine距离:

import mpu

# Point one
lat1 = 52.2296756
lon1 = 21.0122287

# Point two
lat2 = 52.406374
lon2 = 16.9251681

# What you were looking for
dist = mpu.haversine_distance((lat1, lon1), (lat2, lon2))
print(dist)  # gives 278.45817507541943.

另一个包是gpxpy。

如果你不想要依赖,你可以使用:

import math

def distance(origin, destination):
    """
    Calculate the Haversine distance.

    Parameters
    ----------
    origin : tuple of float
        (lat, long)
    destination : tuple of float
        (lat, long)

    Returns
    -------
    distance_in_km : float

    Examples
    --------
    >>> origin = (48.1372, 11.5756)  # Munich
    >>> destination = (52.5186, 13.4083)  # Berlin
    >>> round(distance(origin, destination), 1)
    504.2
    """
    lat1, lon1 = origin
    lat2, lon2 = destination
    radius = 6371  # km

    dlat = math.radians(lat2 - lat1)
    dlon = math.radians(lon2 - lon1)
    a = (math.sin(dlat / 2) * math.sin(dlat / 2) +
         math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) *
         math.sin(dlon / 2) * math.sin(dlon / 2))
    c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
    d = radius * c

    return d


if __name__ == '__main__':
    import doctest
    doctest.testmod()

另一种替代方案是haversine:

from haversine import haversine, Unit

lyon = (45.7597, 4.8422) # (latitude, longitude)
paris = (48.8567, 2.3508)

haversine(lyon, paris)
>> 392.2172595594006  # In kilometers

haversine(lyon, paris, unit=Unit.MILES)
>> 243.71201856934454  # In miles

# You can also use the string abbreviation for units:
haversine(lyon, paris, unit='mi')
>> 243.71201856934454  # In miles

haversine(lyon, paris, unit=Unit.NAUTICAL_MILES)
>> 211.78037755311516  # In nautical miles

他们声称对两个向量中所有点之间的距离进行了性能优化:

from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (latitude, longitude)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, lyon], [paris, new_york], Unit.KILOMETERS)

>> array([ 392.21725956, 6163.43638211])

Vincenty距离从GeoPy 1.13版开始就被弃用了-你应该使用geo .distance.distance()来代替!


上面的答案是基于haversine公式,该公式假设地球是一个球体,结果误差高达0.5%(根据help(earth .distance))。Vincenty距离采用更精确的椭球模型,如WGS-84,并在地质学中实现。例如,

import geopy.distance

coords_1 = (52.2296756, 21.0122287)
coords_2 = (52.406374, 16.9251681)

print geopy.distance.geodesic(coords_1, coords_2).km

将使用默认的椭球WGS-84打印279.352901604公里的距离。(你也可以选择。miles或其他距离单位。)


import numpy as np


def Haversine(lat1,lon1,lat2,lon2, **kwarg):
    """
    This uses the ‘haversine’ formula to calculate the great-circle distance between two points – that is, 
    the shortest distance over the earth’s surface – giving an ‘as-the-crow-flies’ distance between the points 
    (ignoring any hills they fly over, of course!).
    Haversine
    formula:    a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)
    c = 2 ⋅ atan2( √a, √(1−a) )
    d = R ⋅ c
    where   φ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371km);
    note that angles need to be in radians to pass to trig functions!
    """
    R = 6371.0088
    lat1,lon1,lat2,lon2 = map(np.radians, [lat1,lon1,lat2,lon2])

    dlat = lat2 - lat1
    dlon = lon2 - lon1
    a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2) **2
    c = 2 * np.arctan2(a**0.5, (1-a)**0.5)
    d = R * c
    return round(d,4)

我找到了一个更简单、更健壮的解决方案,即使用geogeoy包中的测地线,因为你很可能在你的项目中使用它,所以不需要额外的包安装。

以下是我的解决方案:

from geopy.distance import geodesic


origin = (30.172705, 31.526725)  # (latitude, longitude) don't confuse
dist = (30.288281, 31.732326)

print(geodesic(origin, dist).meters)  # 23576.805481751613
print(geodesic(origin, dist).kilometers)  # 23.576805481751613
print(geodesic(origin, dist).miles)  # 14.64994773134371

地珞


有多种方法来计算基于坐标的距离,即纬度和经度

安装和导入

from geopy import distance
from math import sin, cos, sqrt, atan2, radians
from sklearn.neighbors import DistanceMetric
import osrm
import numpy as np

定义坐标

lat1, lon1, lat2, lon2, R = 20.9467,72.9520, 21.1702, 72.8311, 6373.0
coordinates_from = [lat1, lon1]
coordinates_to = [lat2, lon2]

使用半正矢

dlon = radians(lon2) - radians(lon1)
dlat = radians(lat2) - radians(lat1)
    
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
    
distance_haversine_formula = R * c
print('distance using haversine formula: ', distance_haversine_formula)

使用哈弗辛和sklearn

dist = DistanceMetric.get_metric('haversine')
    
X = [[radians(lat1), radians(lon1)], [radians(lat2), radians(lon2)]]
distance_sklearn = R * dist.pairwise(X)
print('distance using sklearn: ', np.array(distance_sklearn).item(1))

使用OSRM

osrm_client = osrm.Client(host='http://router.project-osrm.org')
coordinates_osrm = [[lon1, lat1], [lon2, lat2]] # note that order is lon, lat
    
osrm_response = osrm_client.route(coordinates=coordinates_osrm, overview=osrm.overview.full)
dist_osrm = osrm_response.get('routes')[0].get('distance')/1000 # in km
print('distance using OSRM: ', dist_osrm)

使用geopy

distance_geopy = distance.distance(coordinates_from, coordinates_to).km
print('distance using geopy: ', distance_geopy)
    
distance_geopy_great_circle = distance.great_circle(coordinates_from, coordinates_to).km 
print('distance using geopy great circle: ', distance_geopy_great_circle)

输出

distance using haversine formula:  26.07547017310917
distance using sklearn:  27.847882224769783
distance using OSRM:  33.091699999999996
distance using geopy:  27.7528030550408
distance using geopy great circle:  27.839182219511834

您可以使用Uber的H3,point_dist()函数来计算两个(纬度,经度)点之间的球面距离。我们可以设置返回单位('km'、'm'或'rads')。默认单位为km。

例子:

import h3

coords_1 = (52.2296756, 21.0122287)
coords_2 = (52.406374, 16.9251681)
distance = h3.point_dist(coords_1, coords_2, unit='m') # To get distance in meters

最简单的方法是用哈弗辛包装。

import haversine as hs

coord_1 = (lat, lon)
coord_2 = (lat, lon)
x = hs.haversine(coord_1, coord_2)
print(f'The distance is {x} km')

(2022年,JavaScript版本)下面是使用最新的JavaScript库解决这个问题的代码。总的好处是,用户可以在运行在现代设备上的web页面上看到结果。

// Using the WGS84 ellipsoid model for computation var geod84 = geodesic.Geodesic.WGS84; // Input data lat1 = 52.2296756; lon1 = 21.0122287; lat2 = 52.406374; lon2 = 16.9251681; // Do the classic `geodetic inversion` computation geod84inv = geod84.Inverse(lat1, lon1, lat2, lon2); // Present the solution (only the geodetic distance) console.log("The distance is " + (geod84inv.s12/1000).toFixed(5) + " km."); <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/geographiclib-geodesic@2.0.0/geographiclib-geodesic.min.js"> </script>


在2022年,人们可以发布JavaScript和Python混合代码,使用最新的Python库,即地理库来解决这个问题。总的好处是,用户可以在运行在现代设备上的web页面上看到结果。

async function main(){ let pyodide = await loadPyodide(); await pyodide.loadPackage(["micropip"]); console.log(pyodide.runPythonAsync(` import micropip await micropip.install('geographiclib') from geographiclib.geodesic import Geodesic lat1 = 52.2296756; lon1 = 21.0122287; lat2 = 52.406374; lon2 = 16.9251681; ans = Geodesic.WGS84.Inverse(lat1, lon1, lat2, lon2) dkm = ans["s12"] / 1000 print("Geodesic solution", ans) print(f"Distance = {dkm:.4f} km.") `)); } main(); <script src="https://cdn.jsdelivr.net/pyodide/v0.21.0/full/pyodide.js"></script>


另一种有趣的方法是通过Pyodide和WebAssembly实现混合JavaScript和Python,使用Python的库Pandas和geographiclib来获得解决方案,这也是可行的。

我用Pandas做了额外的工作来准备输入数据,当输出可用时,将它们附加到解决方案列中。Pandas为常见需求提供了许多有用的输入/输出特性。它的toHtml方法可以方便地在网页上呈现最终的解决方案。

我发现这个答案中的代码在某些iPhone和iPad设备上执行不成功。但在较新的中端Android设备上,它运行得很好。

async function main(){ let pyodide = await loadPyodide(); await pyodide.loadPackage(["pandas", "micropip"]); console.log(pyodide.runPythonAsync(` import micropip import pandas as pd import js print("Pandas version: " + pd.__version__) await micropip.install('geographiclib') from geographiclib.geodesic import Geodesic import geographiclib as gl print("Geographiclib version: " + gl.__version__) data = {'Description': ['Answer to the question', 'Bangkok to Tokyo'], 'From_long': [21.0122287, 100.6], 'From_lat': [52.2296756, 13.8], 'To_long': [16.9251681, 139.76], 'To_lat': [52.406374, 35.69], 'Distance_km': [0, 0]} df1 = pd.DataFrame(data) collist = ['Description','From_long','From_lat','To_long','To_lat'] div2 = js.document.createElement("div") div2content = df1.to_html(buf=None, columns=collist, col_space=None, header=True, index=True) div2.innerHTML = div2content js.document.body.append(div2) arr="<i>by Swatchai</i>" def dkm(frLat,frLon,toLat,toLon): print("frLon,frLat,toLon,toLat:", frLon, "|", frLat, "|", toLon, "|", toLat) dist = Geodesic.WGS84.Inverse(frLat, frLon, toLat, toLon) return dist["s12"] / 1000 collist = ['Description','From_long','From_lat','To_long','To_lat','Distance_km'] dist = [] for ea in zip(df1['From_lat'].values, df1['From_long'].values, df1['To_lat'].values, df1['To_long'].values): ans = dkm(*ea) print("ans=", ans) dist.append(ans) df1['Distance_km'] = dist # Update content div2content = df1.to_html(buf=None, columns=collist, col_space=None, header=True, index=False) div2.innerHTML = div2content js.document.body.append(div2) # Using the haversine formula from math import sin, cos, sqrt, atan2, radians, asin # Approximate radius of earth in km from Wikipedia R = 6371 lat1 = radians(52.2296756) lon1 = radians(21.0122287) lat2 = radians(52.406374) lon2 = radians(16.9251681) # https://en.wikipedia.org/wiki/Haversine_formula def hav(angrad): return (1-cos(angrad))/2 h = hav(lat2-lat1)+cos(lat2)*cos(lat1)*hav(lon2-lon1) dist2 = 2*R*asin(sqrt(h)) print(f"Distance by haversine formula = {dist2:8.6f} km.") `)); } main(); <script src="https://cdn.jsdelivr.net/pyodide/v0.21.0/full/pyodide.js"></script> Pyodide implementation<br>