我尝试在基于经纬度查找距离中实现公式。applet对我正在测试的两点很好:

但是我的代码没有工作。

from math import sin, cos, sqrt, atan2

R = 6373.0

lat1 = 52.2296756
lon1 = 21.0122287
lat2 = 52.406374
lon2 = 16.9251681

dlon = lon2 - lon1
dlat = lat2 - lat1
a = (sin(dlat/2))**2 + cos(lat1) * cos(lat2) * (sin(dlon/2))**2
c = 2 * atan2(sqrt(a), sqrt(1-a))
distance = R * c

print "Result", distance
print "Should be", 278.546

它返回距离5447.05546147。为什么?


当前回答

我找到了一个更简单、更健壮的解决方案,即使用geogeoy包中的测地线,因为你很可能在你的项目中使用它,所以不需要额外的包安装。

以下是我的解决方案:

from geopy.distance import geodesic


origin = (30.172705, 31.526725)  # (latitude, longitude) don't confuse
dist = (30.288281, 31.732326)

print(geodesic(origin, dist).meters)  # 23576.805481751613
print(geodesic(origin, dist).kilometers)  # 23.576805481751613
print(geodesic(origin, dist).miles)  # 14.64994773134371

地珞

其他回答

有多种方法来计算基于坐标的距离,即纬度和经度

安装和导入

from geopy import distance
from math import sin, cos, sqrt, atan2, radians
from sklearn.neighbors import DistanceMetric
import osrm
import numpy as np

定义坐标

lat1, lon1, lat2, lon2, R = 20.9467,72.9520, 21.1702, 72.8311, 6373.0
coordinates_from = [lat1, lon1]
coordinates_to = [lat2, lon2]

使用半正矢

dlon = radians(lon2) - radians(lon1)
dlat = radians(lat2) - radians(lat1)
    
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
    
distance_haversine_formula = R * c
print('distance using haversine formula: ', distance_haversine_formula)

使用哈弗辛和sklearn

dist = DistanceMetric.get_metric('haversine')
    
X = [[radians(lat1), radians(lon1)], [radians(lat2), radians(lon2)]]
distance_sklearn = R * dist.pairwise(X)
print('distance using sklearn: ', np.array(distance_sklearn).item(1))

使用OSRM

osrm_client = osrm.Client(host='http://router.project-osrm.org')
coordinates_osrm = [[lon1, lat1], [lon2, lat2]] # note that order is lon, lat
    
osrm_response = osrm_client.route(coordinates=coordinates_osrm, overview=osrm.overview.full)
dist_osrm = osrm_response.get('routes')[0].get('distance')/1000 # in km
print('distance using OSRM: ', dist_osrm)

使用geopy

distance_geopy = distance.distance(coordinates_from, coordinates_to).km
print('distance using geopy: ', distance_geopy)
    
distance_geopy_great_circle = distance.great_circle(coordinates_from, coordinates_to).km 
print('distance using geopy great circle: ', distance_geopy_great_circle)

输出

distance using haversine formula:  26.07547017310917
distance using sklearn:  27.847882224769783
distance using OSRM:  33.091699999999996
distance using geopy:  27.7528030550408
distance using geopy great circle:  27.839182219511834

我找到了一个更简单、更健壮的解决方案,即使用geogeoy包中的测地线,因为你很可能在你的项目中使用它,所以不需要额外的包安装。

以下是我的解决方案:

from geopy.distance import geodesic


origin = (30.172705, 31.526725)  # (latitude, longitude) don't confuse
dist = (30.288281, 31.732326)

print(geodesic(origin, dist).meters)  # 23576.805481751613
print(geodesic(origin, dist).kilometers)  # 23.576805481751613
print(geodesic(origin, dist).miles)  # 14.64994773134371

地珞

import numpy as np


def Haversine(lat1,lon1,lat2,lon2, **kwarg):
    """
    This uses the ‘haversine’ formula to calculate the great-circle distance between two points – that is, 
    the shortest distance over the earth’s surface – giving an ‘as-the-crow-flies’ distance between the points 
    (ignoring any hills they fly over, of course!).
    Haversine
    formula:    a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)
    c = 2 ⋅ atan2( √a, √(1−a) )
    d = R ⋅ c
    where   φ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371km);
    note that angles need to be in radians to pass to trig functions!
    """
    R = 6371.0088
    lat1,lon1,lat2,lon2 = map(np.radians, [lat1,lon1,lat2,lon2])

    dlat = lat2 - lat1
    dlon = lon2 - lon1
    a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2) **2
    c = 2 * np.arctan2(a**0.5, (1-a)**0.5)
    d = R * c
    return round(d,4)

Vincenty距离从GeoPy 1.13版开始就被弃用了-你应该使用geo .distance.distance()来代替!


上面的答案是基于haversine公式,该公式假设地球是一个球体,结果误差高达0.5%(根据help(earth .distance))。Vincenty距离采用更精确的椭球模型,如WGS-84,并在地质学中实现。例如,

import geopy.distance

coords_1 = (52.2296756, 21.0122287)
coords_2 = (52.406374, 16.9251681)

print geopy.distance.geodesic(coords_1, coords_2).km

将使用默认的椭球WGS-84打印279.352901604公里的距离。(你也可以选择。miles或其他距离单位。)

另一种有趣的方法是通过Pyodide和WebAssembly实现混合JavaScript和Python,使用Python的库Pandas和geographiclib来获得解决方案,这也是可行的。

我用Pandas做了额外的工作来准备输入数据,当输出可用时,将它们附加到解决方案列中。Pandas为常见需求提供了许多有用的输入/输出特性。它的toHtml方法可以方便地在网页上呈现最终的解决方案。

我发现这个答案中的代码在某些iPhone和iPad设备上执行不成功。但在较新的中端Android设备上,它运行得很好。

async function main(){ let pyodide = await loadPyodide(); await pyodide.loadPackage(["pandas", "micropip"]); console.log(pyodide.runPythonAsync(` import micropip import pandas as pd import js print("Pandas version: " + pd.__version__) await micropip.install('geographiclib') from geographiclib.geodesic import Geodesic import geographiclib as gl print("Geographiclib version: " + gl.__version__) data = {'Description': ['Answer to the question', 'Bangkok to Tokyo'], 'From_long': [21.0122287, 100.6], 'From_lat': [52.2296756, 13.8], 'To_long': [16.9251681, 139.76], 'To_lat': [52.406374, 35.69], 'Distance_km': [0, 0]} df1 = pd.DataFrame(data) collist = ['Description','From_long','From_lat','To_long','To_lat'] div2 = js.document.createElement("div") div2content = df1.to_html(buf=None, columns=collist, col_space=None, header=True, index=True) div2.innerHTML = div2content js.document.body.append(div2) arr="<i>by Swatchai</i>" def dkm(frLat,frLon,toLat,toLon): print("frLon,frLat,toLon,toLat:", frLon, "|", frLat, "|", toLon, "|", toLat) dist = Geodesic.WGS84.Inverse(frLat, frLon, toLat, toLon) return dist["s12"] / 1000 collist = ['Description','From_long','From_lat','To_long','To_lat','Distance_km'] dist = [] for ea in zip(df1['From_lat'].values, df1['From_long'].values, df1['To_lat'].values, df1['To_long'].values): ans = dkm(*ea) print("ans=", ans) dist.append(ans) df1['Distance_km'] = dist # Update content div2content = df1.to_html(buf=None, columns=collist, col_space=None, header=True, index=False) div2.innerHTML = div2content js.document.body.append(div2) # Using the haversine formula from math import sin, cos, sqrt, atan2, radians, asin # Approximate radius of earth in km from Wikipedia R = 6371 lat1 = radians(52.2296756) lon1 = radians(21.0122287) lat2 = radians(52.406374) lon2 = radians(16.9251681) # https://en.wikipedia.org/wiki/Haversine_formula def hav(angrad): return (1-cos(angrad))/2 h = hav(lat2-lat1)+cos(lat2)*cos(lat1)*hav(lon2-lon1) dist2 = 2*R*asin(sqrt(h)) print(f"Distance by haversine formula = {dist2:8.6f} km.") `)); } main(); <script src="https://cdn.jsdelivr.net/pyodide/v0.21.0/full/pyodide.js"></script> Pyodide implementation<br>