I am using matplotlib to make scatter plots. Each point on the scatter plot is associated with a named object. I would like to be able to see the name of an object when I hover my cursor over the point on the scatter plot associated with that object. In particular, it would be nice to be able to quickly see the names of the points that are outliers. The closest thing I have been able to find while searching here is the annotate command, but that appears to create a fixed label on the plot. Unfortunately, with the number of points that I have, the scatter plot would be unreadable if I labeled each point. Does anyone know of a way to create labels that only appear when the cursor hovers in the vicinity of that point?


当前回答

其他答案没有解决我在最新版本的Jupyter内联matplotlib图中正确显示工具提示的需求。这条是可行的:

import matplotlib.pyplot as plt
import numpy as np
import mplcursors
np.random.seed(42)

fig, ax = plt.subplots()
ax.scatter(*np.random.random((2, 26)))
ax.set_title("Mouse over a point")
crs = mplcursors.cursor(ax,hover=True)

crs.connect("add", lambda sel: sel.annotation.set_text(
    'Point {},{}'.format(sel.target[0], sel.target[1])))
plt.show()

当用鼠标浏览一个点时,会导致如下图所示:

其他回答

最简单的选择是使用mplcursors包。 Mplcursors:读取文档 mplcursors: github 如果使用Anaconda,请按照这些说明安装,否则使用这些说明安装pip。 这必须在交互式窗口中绘制,而不是内联。 对于jupyter,在单元格中执行%matplotlib qt之类的代码将启用交互式绘图。参见如何在IPython笔记本中打开交互式matplotlib窗口? 在python 3.10, pandas 1.4.2, matplotlib 3.5.1, seaborn 0.11.2中测试

import matplotlib.pyplot as plt
import pandas_datareader as web  # only for test data; must be installed with conda or pip
from mplcursors import cursor  # separate package must be installed

# reproducible sample data as a pandas dataframe
df = web.DataReader('aapl', data_source='yahoo', start='2021-03-09', end='2022-06-13')

plt.figure(figsize=(12, 7))
plt.plot(df.index, df.Close)
cursor(hover=True)
plt.show()

熊猫

ax = df.plot(y='Close', figsize=(10, 7))
cursor(hover=True)
plt.show()

Seaborn

工作与轴级别的情节,如sns。Lineplot和像sns.relplot这样的数字级plot。

import seaborn as sns

# load sample data
tips = sns.load_dataset('tips')

sns.relplot(data=tips, x="total_bill", y="tip", hue="day", col="time")
cursor(hover=True)
plt.show()

我做了一个多行注释系统,添加到:https://stackoverflow.com/a/47166787/10302020。 最新版本: https://github.com/AidenBurgess/MultiAnnotationLineGraph

只需更改底部部分中的数据。

import matplotlib.pyplot as plt


def update_annot(ind, line, annot, ydata):
    x, y = line.get_data()
    annot.xy = (x[ind["ind"][0]], y[ind["ind"][0]])
    # Get x and y values, then format them to be displayed
    x_values = " ".join(list(map(str, ind["ind"])))
    y_values = " ".join(str(ydata[n]) for n in ind["ind"])
    text = "{}, {}".format(x_values, y_values)
    annot.set_text(text)
    annot.get_bbox_patch().set_alpha(0.4)


def hover(event, line_info):
    line, annot, ydata = line_info
    vis = annot.get_visible()
    if event.inaxes == ax:
        # Draw annotations if cursor in right position
        cont, ind = line.contains(event)
        if cont:
            update_annot(ind, line, annot, ydata)
            annot.set_visible(True)
            fig.canvas.draw_idle()
        else:
            # Don't draw annotations
            if vis:
                annot.set_visible(False)
                fig.canvas.draw_idle()


def plot_line(x, y):
    line, = plt.plot(x, y, marker="o")
    # Annotation style may be changed here
    annot = ax.annotate("", xy=(0, 0), xytext=(-20, 20), textcoords="offset points",
                        bbox=dict(boxstyle="round", fc="w"),
                        arrowprops=dict(arrowstyle="->"))
    annot.set_visible(False)
    line_info = [line, annot, y]
    fig.canvas.mpl_connect("motion_notify_event",
                           lambda event: hover(event, line_info))


# Your data values to plot
x1 = range(21)
y1 = range(0, 21)
x2 = range(21)
y2 = range(0, 42, 2)
# Plot line graphs
fig, ax = plt.subplots()
plot_line(x1, y1)
plot_line(x2, y2)
plt.show()

这个解决方案适用于悬停一行而不需要单击它:

import matplotlib.pyplot as plt

# Need to create as global variable so our callback(on_plot_hover) can access
fig = plt.figure()
plot = fig.add_subplot(111)

# create some curves
for i in range(4):
    # Giving unique ids to each data member
    plot.plot(
        [i*1,i*2,i*3,i*4],
        gid=i)

def on_plot_hover(event):
    # Iterating over each data member plotted
    for curve in plot.get_lines():
        # Searching which data member corresponds to current mouse position
        if curve.contains(event)[0]:
            print("over %s" % curve.get_gid())
            
fig.canvas.mpl_connect('motion_notify_event', on_plot_hover)           
plt.show()

其他答案没有解决我在最新版本的Jupyter内联matplotlib图中正确显示工具提示的需求。这条是可行的:

import matplotlib.pyplot as plt
import numpy as np
import mplcursors
np.random.seed(42)

fig, ax = plt.subplots()
ax.scatter(*np.random.random((2, 26)))
ax.set_title("Mouse over a point")
crs = mplcursors.cursor(ax,hover=True)

crs.connect("add", lambda sel: sel.annotation.set_text(
    'Point {},{}'.format(sel.target[0], sel.target[1])))
plt.show()

当用鼠标浏览一个点时,会导致如下图所示:

Mplcursors对我很有用。Mplcursors为matplotlib提供了可单击的注释。它很大程度上受到mpldatacursor (https://github.com/joferkington/mpldatacursor)的启发,具有非常简化的API

import matplotlib.pyplot as plt
import numpy as np
import mplcursors

data = np.outer(range(10), range(1, 5))

fig, ax = plt.subplots()
lines = ax.plot(data)
ax.set_title("Click somewhere on a line.\nRight-click to deselect.\n"
             "Annotations can be dragged.")

mplcursors.cursor(lines) # or just mplcursors.cursor()

plt.show()