I am using matplotlib to make scatter plots. Each point on the scatter plot is associated with a named object. I would like to be able to see the name of an object when I hover my cursor over the point on the scatter plot associated with that object. In particular, it would be nice to be able to quickly see the names of the points that are outliers. The closest thing I have been able to find while searching here is the annotate command, but that appears to create a fixed label on the plot. Unfortunately, with the number of points that I have, the scatter plot would be unreadable if I labeled each point. Does anyone know of a way to create labels that only appear when the cursor hovers in the vicinity of that point?


当前回答

这个解决方案适用于悬停一行而不需要单击它:

import matplotlib.pyplot as plt

# Need to create as global variable so our callback(on_plot_hover) can access
fig = plt.figure()
plot = fig.add_subplot(111)

# create some curves
for i in range(4):
    # Giving unique ids to each data member
    plot.plot(
        [i*1,i*2,i*3,i*4],
        gid=i)

def on_plot_hover(event):
    # Iterating over each data member plotted
    for curve in plot.get_lines():
        # Searching which data member corresponds to current mouse position
        if curve.contains(event)[0]:
            print("over %s" % curve.get_gid())
            
fig.canvas.mpl_connect('motion_notify_event', on_plot_hover)           
plt.show()

其他回答

Mpld3为我解决它。 编辑(新增代码):

import matplotlib.pyplot as plt
import numpy as np
import mpld3

fig, ax = plt.subplots(subplot_kw=dict(axisbg='#EEEEEE'))
N = 100

scatter = ax.scatter(np.random.normal(size=N),
                 np.random.normal(size=N),
                 c=np.random.random(size=N),
                 s=1000 * np.random.random(size=N),
                 alpha=0.3,
                 cmap=plt.cm.jet)
ax.grid(color='white', linestyle='solid')

ax.set_title("Scatter Plot (with tooltips!)", size=20)

labels = ['point {0}'.format(i + 1) for i in range(N)]
tooltip = mpld3.plugins.PointLabelTooltip(scatter, labels=labels)
mpld3.plugins.connect(fig, tooltip)

mpld3.show()

你可以检查这个例子

对http://matplotlib.org/users/shell.html:中提供的示例进行了轻微编辑

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_title('click on points')

line, = ax.plot(np.random.rand(100), '-', picker=5)  # 5 points tolerance


def onpick(event):
    thisline = event.artist
    xdata = thisline.get_xdata()
    ydata = thisline.get_ydata()
    ind = event.ind
    print('onpick points:', *zip(xdata[ind], ydata[ind]))


fig.canvas.mpl_connect('pick_event', onpick)

plt.show()

就像Sohaib问的,这是一条直线

来自http://matplotlib.sourceforge.net/examples/event_handling/pick_event_demo.html:

from matplotlib.pyplot import figure, show
import numpy as npy
from numpy.random import rand


if 1: # picking on a scatter plot (matplotlib.collections.RegularPolyCollection)

    x, y, c, s = rand(4, 100)
    def onpick3(event):
        ind = event.ind
        print('onpick3 scatter:', ind, npy.take(x, ind), npy.take(y, ind))

    fig = figure()
    ax1 = fig.add_subplot(111)
    col = ax1.scatter(x, y, 100*s, c, picker=True)
    #fig.savefig('pscoll.eps')
    fig.canvas.mpl_connect('pick_event', onpick3)

show()

这个食谱绘制了一个关于选择数据点的注释:http://scipy-cookbook.readthedocs.io/items/Matplotlib_Interactive_Plotting.html。 这个配方绘制了一个工具提示,但它需要wxPython: matplotlib中的点和线工具提示?

基于Markus Dutschke”和“ImportanceOfBeingErnest”,我简化了代码,使其更加模块化。

此外,这也不需要安装额外的包。

import matplotlib.pylab as plt
import numpy as np

plt.close('all')
fh, ax = plt.subplots()

#Generate some data
y,x = np.histogram(np.random.randn(10000), bins=500)
x = x[:-1]
colors = ['#0000ff', '#00ff00','#ff0000']
x2, y2 = x,y/10
x3, y3 = x, np.random.randn(500)*10+40

#Plot
h1 = ax.plot(x, y, color=colors[0])
h2 = ax.plot(x2, y2, color=colors[1])
h3 = ax.scatter(x3, y3, color=colors[2], s=1)

artists = h1 + h2 + [h3] #concatenating lists
labels = [list('ABCDE'*100),list('FGHIJ'*100),list('klmno'*100)] #define labels shown

#___ Initialize annotation arrow
annot = ax.annotate("", xy=(0,0), xytext=(20,20),textcoords="offset points",
                    bbox=dict(boxstyle="round", fc="w"),
                    arrowprops=dict(arrowstyle="->"))
annot.set_visible(False)

def on_plot_hover(event):
    if event.inaxes != ax: #exit if mouse is not on figure
        return
    is_vis = annot.get_visible() #check if an annotation is visible
    # x,y = event.xdata,event.ydata #coordinates of mouse in graph
    for ii, artist in enumerate(artists):
        is_contained, dct = artist.contains(event)

        if(is_contained):
            if('get_data' in dir(artist)): #for plot
                data = list(zip(*artist.get_data()))
            elif('get_offsets' in dir(artist)): #for scatter
                data = artist.get_offsets().data

            inds = dct['ind'] #get which data-index is under the mouse
            #___ Set Annotation settings
            xy = data[inds[0]] #get 1st position only
            annot.xy = xy
            annot.set_text(f'pos={xy},text={labels[ii][inds[0]]}')
            annot.get_bbox_patch().set_edgecolor(colors[ii])
            annot.get_bbox_patch().set_alpha(0.7)
            annot.set_visible(True)
            fh.canvas.draw_idle()
        else:
             if is_vis:
                 annot.set_visible(False) #disable when not hovering
                 fh.canvas.draw_idle()

fh.canvas.mpl_connect('motion_notify_event', on_plot_hover)

给出以下结果:

这个解决方案适用于悬停一行而不需要单击它:

import matplotlib.pyplot as plt

# Need to create as global variable so our callback(on_plot_hover) can access
fig = plt.figure()
plot = fig.add_subplot(111)

# create some curves
for i in range(4):
    # Giving unique ids to each data member
    plot.plot(
        [i*1,i*2,i*3,i*4],
        gid=i)

def on_plot_hover(event):
    # Iterating over each data member plotted
    for curve in plot.get_lines():
        # Searching which data member corresponds to current mouse position
        if curve.contains(event)[0]:
            print("over %s" % curve.get_gid())
            
fig.canvas.mpl_connect('motion_notify_event', on_plot_hover)           
plt.show()