我试着用R来计算矩阵中一系列值的移动平均值。R中似乎没有一个内置函数可以让我计算移动平均线。有任何软件包提供这样的服务吗?还是需要我自己写?
当前回答
为了配合坎迪奇西斯和罗德里戈·雷麦黛奥的回答;
moving_fun <- function(x, w, FUN, ...) {
# x: a double vector
# w: the length of the window, i.e., the section of the vector selected to apply FUN
# FUN: a function that takes a vector and return a summarize value, e.g., mean, sum, etc.
# Given a double type vector apply a FUN over a moving window from left to the right,
# when a window boundary is not a legal section, i.e. lower_bound and i (upper bound)
# are not contained in the length of the vector, return a NA_real_
if (w < 1) {
stop("The length of the window 'w' must be greater than 0")
}
output <- x
for (i in 1:length(x)) {
# plus 1 because the index is inclusive with the upper_bound 'i'
lower_bound <- i - w + 1
if (lower_bound < 1) {
output[i] <- NA_real_
} else {
output[i] <- FUN(x[lower_bound:i, ...])
}
}
output
}
# example
v <- seq(1:10)
# compute a MA(2)
moving_fun(v, 2, mean)
# compute moving sum of two periods
moving_fun(v, 2, sum)
其他回答
你可以通过以下方法计算窗口宽度为k的向量x的移动平均值:
apply(embed(x, k), 1, mean)
虽然有点慢,但你也可以使用zoo::rollapply在矩阵上执行计算。
reqd_ma <- rollapply(x, FUN = mean, width = n)
其中x为数据集,FUN = mean为函数;你也可以改变它为min, max, sd等,宽度是滚动窗口。
使用费用应充分、有效。假设你有一个向量x,你想要n个数的和
cx <- c(0,cumsum(x))
rsum <- (cx[(n+1):length(cx)] - cx[1:(length(cx) - n)]) / n
正如@mzuther在评论中指出的那样,这假设数据中没有NAs。要处理这些问题,需要将每个窗口除以非na值的数量。这里有一种方法,结合@里卡多·克鲁兹的评论:
cx <- c(0, cumsum(ifelse(is.na(x), 0, x)))
cn <- c(0, cumsum(ifelse(is.na(x), 0, 1)))
rx <- cx[(n+1):length(cx)] - cx[1:(length(cx) - n)]
rn <- cn[(n+1):length(cx)] - cn[1:(length(cx) - n)]
rsum <- rx / rn
这仍然有一个问题,如果窗口中的所有值都是NAs,那么将会有一个零误差的除法。
vector_avg <- function(x){
sum_x = 0
for(i in 1:length(x)){
if(!is.na(x[i]))
sum_x = sum_x + x[i]
}
return(sum_x/length(x))
}
我使用聚合和一个由rep()创建的向量。这样做的好处是可以使用cbind()一次在数据帧中聚合1个以上的列。下面是一个长度为1000的向量(v)的移动平均值为60的例子:
v=1:1000*0.002+rnorm(1000)
mrng=rep(1:round(length(v)/60+0.5), length.out=length(v), each=60)
aggregate(v~mrng, FUN=mean, na.rm=T)
请注意,rep中的第一个参数只是根据向量的长度和要平均的数量,为移动范围获取足够的唯一值;第二个参数保持长度等于向量长度,最后一个参数重复第一个参数的值的次数与平均周期相同。
总的来说,你可以使用几个函数(中值,最大值,最小值)-例如所示的平均值。同样,could可以使用cbind公式对数据帧中的多个(或所有)列执行此操作。