我试着用R来计算矩阵中一系列值的移动平均值。R中似乎没有一个内置函数可以让我计算移动平均线。有任何软件包提供这样的服务吗?还是需要我自己写?
当前回答
为了配合坎迪奇西斯和罗德里戈·雷麦黛奥的回答;
moving_fun <- function(x, w, FUN, ...) {
# x: a double vector
# w: the length of the window, i.e., the section of the vector selected to apply FUN
# FUN: a function that takes a vector and return a summarize value, e.g., mean, sum, etc.
# Given a double type vector apply a FUN over a moving window from left to the right,
# when a window boundary is not a legal section, i.e. lower_bound and i (upper bound)
# are not contained in the length of the vector, return a NA_real_
if (w < 1) {
stop("The length of the window 'w' must be greater than 0")
}
output <- x
for (i in 1:length(x)) {
# plus 1 because the index is inclusive with the upper_bound 'i'
lower_bound <- i - w + 1
if (lower_bound < 1) {
output[i] <- NA_real_
} else {
output[i] <- FUN(x[lower_bound:i, ...])
}
}
output
}
# example
v <- seq(1:10)
# compute a MA(2)
moving_fun(v, 2, mean)
# compute moving sum of two periods
moving_fun(v, 2, sum)
其他回答
事实上,RcppRoll非常好。
cantdutchthis发布的代码必须在窗口的第四行进行修正:
ma <- function(arr, n=15){
res = arr
for(i in n:length(arr)){
res[i] = mean(arr[(i-n+1):i])
}
res
}
这里给出了另一种处理缺失的方法。
第三种方法,改进cantdutch这段代码来计算部分平均与否,如下:
ma <- function(x, n=2,parcial=TRUE){
res = x #set the first values
if (parcial==TRUE){
for(i in 1:length(x)){
t<-max(i-n+1,1)
res[i] = mean(x[t:i])
}
res
}else{
for(i in 1:length(x)){
t<-max(i-n+1,1)
res[i] = mean(x[t:i])
}
res[-c(seq(1,n-1,1))] #remove the n-1 first,i.e., res[c(-3,-4,...)]
}
}
使用费用应充分、有效。假设你有一个向量x,你想要n个数的和
cx <- c(0,cumsum(x))
rsum <- (cx[(n+1):length(cx)] - cx[1:(length(cx) - n)]) / n
正如@mzuther在评论中指出的那样,这假设数据中没有NAs。要处理这些问题,需要将每个窗口除以非na值的数量。这里有一种方法,结合@里卡多·克鲁兹的评论:
cx <- c(0, cumsum(ifelse(is.na(x), 0, x)))
cn <- c(0, cumsum(ifelse(is.na(x), 0, 1)))
rx <- cx[(n+1):length(cx)] - cx[1:(length(cx) - n)]
rn <- cn[(n+1):length(cx)] - cn[1:(length(cx) - n)]
rsum <- rx / rn
这仍然有一个问题,如果窗口中的所有值都是NAs,那么将会有一个零误差的除法。
你可以通过以下方法计算窗口宽度为k的向量x的移动平均值:
apply(embed(x, k), 1, mean)
下面的示例代码展示了如何使用zoo包中的rollmean函数计算居中移动平均和尾随移动平均。
library(tidyverse)
library(zoo)
some_data = tibble(day = 1:10)
# cma = centered moving average
# tma = trailing moving average
some_data = some_data %>%
mutate(cma = rollmean(day, k = 3, fill = NA)) %>%
mutate(tma = rollmean(day, k = 3, fill = NA, align = "right"))
some_data
#> # A tibble: 10 x 3
#> day cma tma
#> <int> <dbl> <dbl>
#> 1 1 NA NA
#> 2 2 2 NA
#> 3 3 3 2
#> 4 4 4 3
#> 5 5 5 4
#> 6 6 6 5
#> 7 7 7 6
#> 8 8 8 7
#> 9 9 9 8
#> 10 10 NA 9
您可以使用RcppRoll来实现用c++编写的快速移动平均线。只需调用roll_mean函数。文档可以在这里找到。
否则,这个(较慢的)for循环应该可以做到:
ma <- function(arr, n=15){
res = arr
for(i in n:length(arr)){
res[i] = mean(arr[(i-n):i])
}
res
}