我试着用R来计算矩阵中一系列值的移动平均值。R中似乎没有一个内置函数可以让我计算移动平均线。有任何软件包提供这样的服务吗?还是需要我自己写?
当前回答
或者你可以简单地计算它使用过滤器,这是我使用的函数:
ma <- function(x, n = 5){filter(x, rep(1 / n, n), sides = 2)}
如果使用dplyr,请注意在上面的函数中指定stats::filter。
其他回答
或者你可以简单地计算它使用过滤器,这是我使用的函数:
ma <- function(x, n = 5){filter(x, rep(1 / n, n), sides = 2)}
如果使用dplyr,请注意在上面的函数中指定stats::filter。
你可以通过以下方法计算窗口宽度为k的向量x的移动平均值:
apply(embed(x, k), 1, mean)
事实上,RcppRoll非常好。
cantdutchthis发布的代码必须在窗口的第四行进行修正:
ma <- function(arr, n=15){
res = arr
for(i in n:length(arr)){
res[i] = mean(arr[(i-n+1):i])
}
res
}
这里给出了另一种处理缺失的方法。
第三种方法,改进cantdutch这段代码来计算部分平均与否,如下:
ma <- function(x, n=2,parcial=TRUE){
res = x #set the first values
if (parcial==TRUE){
for(i in 1:length(x)){
t<-max(i-n+1,1)
res[i] = mean(x[t:i])
}
res
}else{
for(i in 1:length(x)){
t<-max(i-n+1,1)
res[i] = mean(x[t:i])
}
res[-c(seq(1,n-1,1))] #remove the n-1 first,i.e., res[c(-3,-4,...)]
}
}
vector_avg <- function(x){
sum_x = 0
for(i in 1:length(x)){
if(!is.na(x[i]))
sum_x = sum_x + x[i]
}
return(sum_x/length(x))
}
下面的示例代码展示了如何使用zoo包中的rollmean函数计算居中移动平均和尾随移动平均。
library(tidyverse)
library(zoo)
some_data = tibble(day = 1:10)
# cma = centered moving average
# tma = trailing moving average
some_data = some_data %>%
mutate(cma = rollmean(day, k = 3, fill = NA)) %>%
mutate(tma = rollmean(day, k = 3, fill = NA, align = "right"))
some_data
#> # A tibble: 10 x 3
#> day cma tma
#> <int> <dbl> <dbl>
#> 1 1 NA NA
#> 2 2 2 NA
#> 3 3 3 2
#> 4 4 4 3
#> 5 5 5 4
#> 6 6 6 5
#> 7 7 7 6
#> 8 8 8 7
#> 9 9 9 8
#> 10 10 NA 9