我试着用R来计算矩阵中一系列值的移动平均值。R中似乎没有一个内置函数可以让我计算移动平均线。有任何软件包提供这样的服务吗?还是需要我自己写?
当前回答
下面的示例代码展示了如何使用zoo包中的rollmean函数计算居中移动平均和尾随移动平均。
library(tidyverse)
library(zoo)
some_data = tibble(day = 1:10)
# cma = centered moving average
# tma = trailing moving average
some_data = some_data %>%
mutate(cma = rollmean(day, k = 3, fill = NA)) %>%
mutate(tma = rollmean(day, k = 3, fill = NA, align = "right"))
some_data
#> # A tibble: 10 x 3
#> day cma tma
#> <int> <dbl> <dbl>
#> 1 1 NA NA
#> 2 2 2 NA
#> 3 3 3 2
#> 4 4 4 3
#> 5 5 5 4
#> 6 6 6 5
#> 7 7 7 6
#> 8 8 8 7
#> 9 9 9 8
#> 10 10 NA 9
其他回答
在数据。表1.12.0增加了新的滚动平均值函数,以计算快速和准确的滚动平均值,仔细处理NA, NaN和+Inf, -Inf值。
由于在这个问题中没有可重复的例子,所以在这里没有更多的问题要解决。
你可以在手册中找到更多关于?frollmean的信息,也可以在?frollmean网站上找到。
下面是手册中的例子:
library(data.table)
d = as.data.table(list(1:6/2, 3:8/4))
# rollmean of single vector and single window
frollmean(d[, V1], 3)
# multiple columns at once
frollmean(d, 3)
# multiple windows at once
frollmean(d[, .(V1)], c(3, 4))
# multiple columns and multiple windows at once
frollmean(d, c(3, 4))
## three above are embarrassingly parallel using openmp
caTools包具有非常快速的滚动mean/min/max/sd和其他一些功能。我只使用过runmean和runsd,它们是迄今为止提到的其他包中最快的。
vector_avg <- function(x){
sum_x = 0
for(i in 1:length(x)){
if(!is.na(x[i]))
sum_x = sum_x + x[i]
}
return(sum_x/length(x))
}
动物园包中的滚动平均值/最大值/中位数(rollmean) TTR中的移动平均线 马云在预测
您可以使用RcppRoll来实现用c++编写的快速移动平均线。只需调用roll_mean函数。文档可以在这里找到。
否则,这个(较慢的)for循环应该可以做到:
ma <- function(arr, n=15){
res = arr
for(i in n:length(arr)){
res[i] = mean(arr[(i-n):i])
}
res
}