我试着用R来计算矩阵中一系列值的移动平均值。R中似乎没有一个内置函数可以让我计算移动平均线。有任何软件包提供这样的服务吗?还是需要我自己写?


当前回答

下面的示例代码展示了如何使用zoo包中的rollmean函数计算居中移动平均和尾随移动平均。

library(tidyverse)
library(zoo)

some_data = tibble(day = 1:10)
# cma = centered moving average
# tma = trailing moving average
some_data = some_data %>%
    mutate(cma = rollmean(day, k = 3, fill = NA)) %>%
    mutate(tma = rollmean(day, k = 3, fill = NA, align = "right"))
some_data
#> # A tibble: 10 x 3
#>      day   cma   tma
#>    <int> <dbl> <dbl>
#>  1     1    NA    NA
#>  2     2     2    NA
#>  3     3     3     2
#>  4     4     4     3
#>  5     5     5     4
#>  6     6     6     5
#>  7     7     7     6
#>  8     8     8     7
#>  9     9     9     8
#> 10    10    NA     9

其他回答

或者你可以简单地计算它使用过滤器,这是我使用的函数:

ma <- function(x, n = 5){filter(x, rep(1 / n, n), sides = 2)}

如果使用dplyr,请注意在上面的函数中指定stats::filter。

在数据。表1.12.0增加了新的滚动平均值函数,以计算快速和准确的滚动平均值,仔细处理NA, NaN和+Inf, -Inf值。

由于在这个问题中没有可重复的例子,所以在这里没有更多的问题要解决。

你可以在手册中找到更多关于?frollmean的信息,也可以在?frollmean网站上找到。

下面是手册中的例子:

library(data.table)
d = as.data.table(list(1:6/2, 3:8/4))

# rollmean of single vector and single window
frollmean(d[, V1], 3)

# multiple columns at once
frollmean(d, 3)

# multiple windows at once
frollmean(d[, .(V1)], c(3, 4))

# multiple columns and multiple windows at once
frollmean(d, c(3, 4))

## three above are embarrassingly parallel using openmp

为了配合坎迪奇西斯和罗德里戈·雷麦黛奥的回答;

moving_fun <- function(x, w, FUN, ...) {
  # x: a double vector
  # w: the length of the window, i.e., the section of the vector selected to apply FUN
  # FUN: a function that takes a vector and return a summarize value, e.g., mean, sum, etc.
  # Given a double type vector apply a FUN over a moving window from left to the right, 
  #    when a window boundary is not a legal section, i.e. lower_bound and i (upper bound) 
  #    are not contained in the length of the vector, return a NA_real_
  if (w < 1) {
    stop("The length of the window 'w' must be greater than 0")
  }
  output <- x
  for (i in 1:length(x)) {
     # plus 1 because the index is inclusive with the upper_bound 'i'
    lower_bound <- i - w + 1
    if (lower_bound < 1) {
      output[i] <- NA_real_
    } else {
      output[i] <- FUN(x[lower_bound:i, ...])
    }
  }
  output
}

# example
v <- seq(1:10)

# compute a MA(2)
moving_fun(v, 2, mean)

# compute moving sum of two periods
moving_fun(v, 2, sum)
vector_avg <- function(x){
  sum_x = 0
  for(i in 1:length(x)){
    if(!is.na(x[i]))
      sum_x = sum_x + x[i]
  }
  return(sum_x/length(x))
}

事实上,RcppRoll非常好。

cantdutchthis发布的代码必须在窗口的第四行进行修正:

ma <- function(arr, n=15){
  res = arr
  for(i in n:length(arr)){
    res[i] = mean(arr[(i-n+1):i])
  }
  res
}

这里给出了另一种处理缺失的方法。

第三种方法,改进cantdutch这段代码来计算部分平均与否,如下:

  ma <- function(x, n=2,parcial=TRUE){
  res = x #set the first values

  if (parcial==TRUE){
    for(i in 1:length(x)){
      t<-max(i-n+1,1)
      res[i] = mean(x[t:i])
    }
    res

  }else{
    for(i in 1:length(x)){
      t<-max(i-n+1,1)
      res[i] = mean(x[t:i])
    }
    res[-c(seq(1,n-1,1))] #remove the n-1 first,i.e., res[c(-3,-4,...)]
  }
}