我试图读取一个大的csv文件(aprox。6 GB)在熊猫和我得到一个内存错误:
MemoryError Traceback (most recent call last)
<ipython-input-58-67a72687871b> in <module>()
----> 1 data=pd.read_csv('aphro.csv',sep=';')
...
MemoryError:
有什么帮助吗?
我试图读取一个大的csv文件(aprox。6 GB)在熊猫和我得到一个内存错误:
MemoryError Traceback (most recent call last)
<ipython-input-58-67a72687871b> in <module>()
----> 1 data=pd.read_csv('aphro.csv',sep=';')
...
MemoryError:
有什么帮助吗?
当前回答
函数read_csv和read_table几乎是一样的。但在程序中使用read_table函数时,必须分配分隔符“,”。
def get_from_action_data(fname, chunk_size=100000):
reader = pd.read_csv(fname, header=0, iterator=True)
chunks = []
loop = True
while loop:
try:
chunk = reader.get_chunk(chunk_size)[["user_id", "type"]]
chunks.append(chunk)
except StopIteration:
loop = False
print("Iteration is stopped")
df_ac = pd.concat(chunks, ignore_index=True)
其他回答
对于大数据,我建议你使用"dask"库,例如:
# Dataframes implement the Pandas API
import dask.dataframe as dd
df = dd.read_csv('s3://.../2018-*-*.csv')
你可以在这里阅读更多的文档。
另一个很好的选择是使用modin,因为所有的功能都与pandas相同,但它利用了分布式数据框架库,如dask。
在我的项目中,另一个高级库是数据表。
# Datatable python library
import datatable as dt
df = dt.fread("s3://.../2018-*-*.csv")
如果您使用pandas将大文件读入块,然后逐行yield,这是我所做的
import pandas as pd
def chunck_generator(filename, header=False,chunk_size = 10 ** 5):
for chunk in pd.read_csv(filename,delimiter=',', iterator=True, chunksize=chunk_size, parse_dates=[1] ):
yield (chunk)
def _generator( filename, header=False,chunk_size = 10 ** 5):
chunk = chunck_generator(filename, header=False,chunk_size = 10 ** 5)
for row in chunk:
yield row
if __name__ == "__main__":
filename = r'file.csv'
generator = generator(filename=filename)
while True:
print(next(generator))
函数read_csv和read_table几乎是一样的。但在程序中使用read_table函数时,必须分配分隔符“,”。
def get_from_action_data(fname, chunk_size=100000):
reader = pd.read_csv(fname, header=0, iterator=True)
chunks = []
loop = True
while loop:
try:
chunk = reader.get_chunk(chunk_size)[["user_id", "type"]]
chunks.append(chunk)
except StopIteration:
loop = False
print("Iteration is stopped")
df_ac = pd.concat(chunks, ignore_index=True)
下面是一个例子:
chunkTemp = []
queryTemp = []
query = pd.DataFrame()
for chunk in pd.read_csv(file, header=0, chunksize=<your_chunksize>, iterator=True, low_memory=False):
#REPLACING BLANK SPACES AT COLUMNS' NAMES FOR SQL OPTIMIZATION
chunk = chunk.rename(columns = {c: c.replace(' ', '') for c in chunk.columns})
#YOU CAN EITHER:
#1)BUFFER THE CHUNKS IN ORDER TO LOAD YOUR WHOLE DATASET
chunkTemp.append(chunk)
#2)DO YOUR PROCESSING OVER A CHUNK AND STORE THE RESULT OF IT
query = chunk[chunk[<column_name>].str.startswith(<some_pattern>)]
#BUFFERING PROCESSED DATA
queryTemp.append(query)
#! NEVER DO pd.concat OR pd.DataFrame() INSIDE A LOOP
print("Database: CONCATENATING CHUNKS INTO A SINGLE DATAFRAME")
chunk = pd.concat(chunkTemp)
print("Database: LOADED")
#CONCATENATING PROCESSED DATA
query = pd.concat(queryTemp)
print(query)
在使用chunksize选项之前,如果你想确定你想要在@unutbu提到的分块for循环中写入的进程函数,你可以简单地使用nrows选项。
small_df = pd.read_csv(filename, nrows=100)
一旦确定流程块准备好了,就可以将其放入整个数据帧的分块for循环中。