我试图读取一个大的csv文件(aprox。6 GB)在熊猫和我得到一个内存错误:
MemoryError Traceback (most recent call last)
<ipython-input-58-67a72687871b> in <module>()
----> 1 data=pd.read_csv('aphro.csv',sep=';')
...
MemoryError:
有什么帮助吗?
我试图读取一个大的csv文件(aprox。6 GB)在熊猫和我得到一个内存错误:
MemoryError Traceback (most recent call last)
<ipython-input-58-67a72687871b> in <module>()
----> 1 data=pd.read_csv('aphro.csv',sep=';')
...
MemoryError:
有什么帮助吗?
当前回答
您可以将数据读入为块,并将每个块保存为pickle。
import pandas as pd
import pickle
in_path = "" #Path where the large file is
out_path = "" #Path to save the pickle files to
chunk_size = 400000 #size of chunks relies on your available memory
separator = "~"
reader = pd.read_csv(in_path,sep=separator,chunksize=chunk_size,
low_memory=False)
for i, chunk in enumerate(reader):
out_file = out_path + "/data_{}.pkl".format(i+1)
with open(out_file, "wb") as f:
pickle.dump(chunk,f,pickle.HIGHEST_PROTOCOL)
在下一步中,读入pickle并将每个pickle附加到所需的数据框架中。
import glob
pickle_path = "" #Same Path as out_path i.e. where the pickle files are
data_p_files=[]
for name in glob.glob(pickle_path + "/data_*.pkl"):
data_p_files.append(name)
df = pd.DataFrame([])
for i in range(len(data_p_files)):
df = df.append(pd.read_pickle(data_p_files[i]),ignore_index=True)
其他回答
除了上面的答案,对于那些想要处理CSV然后导出到CSV、parquet或SQL的人来说,d6tstack是另一个不错的选择。您可以加载多个文件,它处理数据模式更改(添加/删除列)。核心支持已经被剔除。
def apply(dfg):
# do stuff
return dfg
c = d6tstack.combine_csv.CombinerCSV([bigfile.csv], apply_after_read=apply, sep=',', chunksize=1e6)
# or
c = d6tstack.combine_csv.CombinerCSV(glob.glob('*.csv'), apply_after_read=apply, chunksize=1e6)
# output to various formats, automatically chunked to reduce memory consumption
c.to_csv_combine(filename='out.csv')
c.to_parquet_combine(filename='out.pq')
c.to_psql_combine('postgresql+psycopg2://usr:pwd@localhost/db', 'tablename') # fast for postgres
c.to_mysql_combine('mysql+mysqlconnector://usr:pwd@localhost/db', 'tablename') # fast for mysql
c.to_sql_combine('postgresql+psycopg2://usr:pwd@localhost/db', 'tablename') # slow but flexible
如果您使用pandas将大文件读入块,然后逐行yield,这是我所做的
import pandas as pd
def chunck_generator(filename, header=False,chunk_size = 10 ** 5):
for chunk in pd.read_csv(filename,delimiter=',', iterator=True, chunksize=chunk_size, parse_dates=[1] ):
yield (chunk)
def _generator( filename, header=False,chunk_size = 10 ** 5):
chunk = chunck_generator(filename, header=False,chunk_size = 10 ** 5)
for row in chunk:
yield row
if __name__ == "__main__":
filename = r'file.csv'
generator = generator(filename=filename)
while True:
print(next(generator))
对于大数据,我建议你使用"dask"库,例如:
# Dataframes implement the Pandas API
import dask.dataframe as dd
df = dd.read_csv('s3://.../2018-*-*.csv')
你可以在这里阅读更多的文档。
另一个很好的选择是使用modin,因为所有的功能都与pandas相同,但它利用了分布式数据框架库,如dask。
在我的项目中,另一个高级库是数据表。
# Datatable python library
import datatable as dt
df = dt.fread("s3://.../2018-*-*.csv")
您可以将数据读入为块,并将每个块保存为pickle。
import pandas as pd
import pickle
in_path = "" #Path where the large file is
out_path = "" #Path to save the pickle files to
chunk_size = 400000 #size of chunks relies on your available memory
separator = "~"
reader = pd.read_csv(in_path,sep=separator,chunksize=chunk_size,
low_memory=False)
for i, chunk in enumerate(reader):
out_file = out_path + "/data_{}.pkl".format(i+1)
with open(out_file, "wb") as f:
pickle.dump(chunk,f,pickle.HIGHEST_PROTOCOL)
在下一步中,读入pickle并将每个pickle附加到所需的数据框架中。
import glob
pickle_path = "" #Same Path as out_path i.e. where the pickle files are
data_p_files=[]
for name in glob.glob(pickle_path + "/data_*.pkl"):
data_p_files.append(name)
df = pd.DataFrame([])
for i in range(len(data_p_files)):
df = df.append(pd.read_pickle(data_p_files[i]),ignore_index=True)
我是这样说的:
chunks=pd.read_table('aphro.csv',chunksize=1000000,sep=';',\
names=['lat','long','rf','date','slno'],index_col='slno',\
header=None,parse_dates=['date'])
df=pd.DataFrame()
%time df=pd.concat(chunk.groupby(['lat','long',chunk['date'].map(lambda x: x.year)])['rf'].agg(['sum']) for chunk in chunks)