我试图读取一个大的csv文件(aprox。6 GB)在熊猫和我得到一个内存错误:

MemoryError                               Traceback (most recent call last)
<ipython-input-58-67a72687871b> in <module>()
----> 1 data=pd.read_csv('aphro.csv',sep=';')

...

MemoryError: 

有什么帮助吗?


当前回答

我是这样说的:

chunks=pd.read_table('aphro.csv',chunksize=1000000,sep=';',\
       names=['lat','long','rf','date','slno'],index_col='slno',\
       header=None,parse_dates=['date'])

df=pd.DataFrame()
%time df=pd.concat(chunk.groupby(['lat','long',chunk['date'].map(lambda x: x.year)])['rf'].agg(['sum']) for chunk in chunks)

其他回答

如果有人还在寻找这样的东西,我发现这个名为modin的新库可以提供帮助。它使用分布式计算来帮助读取。这里有一篇不错的文章将其功能与熊猫进行了比较。它本质上使用与熊猫相同的功能。

import modin.pandas as pd
pd.read_csv(CSV_FILE_NAME)

你可以尝试sframe,它和pandas有相同的语法,但是允许你操作比你的RAM大的文件。

我是这样说的:

chunks=pd.read_table('aphro.csv',chunksize=1000000,sep=';',\
       names=['lat','long','rf','date','slno'],index_col='slno',\
       header=None,parse_dates=['date'])

df=pd.DataFrame()
%time df=pd.concat(chunk.groupby(['lat','long',chunk['date'].map(lambda x: x.year)])['rf'].agg(['sum']) for chunk in chunks)

该错误表明机器没有足够的内存来读取整个 CSV一次转换成一个数据帧。假设您不需要整个数据集 内存,避免这个问题的一种方法是处理CSV在 Chunks(通过指定chunksize参数):

chunksize = 10 ** 6
for chunk in pd.read_csv(filename, chunksize=chunksize):
    process(chunk)

chunksize参数指定每个块的行数。 (当然,最后一个块可能包含少于块大小的行。)


熊猫>= 1.2

Read_csv with chunksize返回一个上下文管理器,像这样使用:

chunksize = 10 ** 6
with pd.read_csv(filename, chunksize=chunksize) as reader:
    for chunk in reader:
        process(chunk)

参见 GH38225

如果你有一个csv文件,有数百万个数据条目,你想要加载完整的数据集,你应该使用dask_cudf,

import dask_cudf as dc

df = dc.read_csv("large_data.csv")