我试图读取一个大的csv文件(aprox。6 GB)在熊猫和我得到一个内存错误:
MemoryError Traceback (most recent call last)
<ipython-input-58-67a72687871b> in <module>()
----> 1 data=pd.read_csv('aphro.csv',sep=';')
...
MemoryError:
有什么帮助吗?
我试图读取一个大的csv文件(aprox。6 GB)在熊猫和我得到一个内存错误:
MemoryError Traceback (most recent call last)
<ipython-input-58-67a72687871b> in <module>()
----> 1 data=pd.read_csv('aphro.csv',sep=';')
...
MemoryError:
有什么帮助吗?
当前回答
如果你有一个csv文件,有数百万个数据条目,你想要加载完整的数据集,你应该使用dask_cudf,
import dask_cudf as dc
df = dc.read_csv("large_data.csv")
其他回答
在使用chunksize选项之前,如果你想确定你想要在@unutbu提到的分块for循环中写入的进程函数,你可以简单地使用nrows选项。
small_df = pd.read_csv(filename, nrows=100)
一旦确定流程块准备好了,就可以将其放入整个数据帧的分块for循环中。
您可以将数据读入为块,并将每个块保存为pickle。
import pandas as pd
import pickle
in_path = "" #Path where the large file is
out_path = "" #Path to save the pickle files to
chunk_size = 400000 #size of chunks relies on your available memory
separator = "~"
reader = pd.read_csv(in_path,sep=separator,chunksize=chunk_size,
low_memory=False)
for i, chunk in enumerate(reader):
out_file = out_path + "/data_{}.pkl".format(i+1)
with open(out_file, "wb") as f:
pickle.dump(chunk,f,pickle.HIGHEST_PROTOCOL)
在下一步中,读入pickle并将每个pickle附加到所需的数据框架中。
import glob
pickle_path = "" #Same Path as out_path i.e. where the pickle files are
data_p_files=[]
for name in glob.glob(pickle_path + "/data_*.pkl"):
data_p_files.append(name)
df = pd.DataFrame([])
for i in range(len(data_p_files)):
df = df.append(pd.read_pickle(data_p_files[i]),ignore_index=True)
该错误表明机器没有足够的内存来读取整个 CSV一次转换成一个数据帧。假设您不需要整个数据集 内存,避免这个问题的一种方法是处理CSV在 Chunks(通过指定chunksize参数):
chunksize = 10 ** 6
for chunk in pd.read_csv(filename, chunksize=chunksize):
process(chunk)
chunksize参数指定每个块的行数。 (当然,最后一个块可能包含少于块大小的行。)
熊猫>= 1.2
Read_csv with chunksize返回一个上下文管理器,像这样使用:
chunksize = 10 ** 6
with pd.read_csv(filename, chunksize=chunksize) as reader:
for chunk in reader:
process(chunk)
参见 GH38225
对于大数据,我建议你使用"dask"库,例如:
# Dataframes implement the Pandas API
import dask.dataframe as dd
df = dd.read_csv('s3://.../2018-*-*.csv')
你可以在这里阅读更多的文档。
另一个很好的选择是使用modin,因为所有的功能都与pandas相同,但它利用了分布式数据框架库,如dask。
在我的项目中,另一个高级库是数据表。
# Datatable python library
import datatable as dt
df = dt.fread("s3://.../2018-*-*.csv")
如果您使用pandas将大文件读入块,然后逐行yield,这是我所做的
import pandas as pd
def chunck_generator(filename, header=False,chunk_size = 10 ** 5):
for chunk in pd.read_csv(filename,delimiter=',', iterator=True, chunksize=chunk_size, parse_dates=[1] ):
yield (chunk)
def _generator( filename, header=False,chunk_size = 10 ** 5):
chunk = chunck_generator(filename, header=False,chunk_size = 10 ** 5)
for row in chunk:
yield row
if __name__ == "__main__":
filename = r'file.csv'
generator = generator(filename=filename)
while True:
print(next(generator))