我试图读取一个大的csv文件(aprox。6 GB)在熊猫和我得到一个内存错误:

MemoryError                               Traceback (most recent call last)
<ipython-input-58-67a72687871b> in <module>()
----> 1 data=pd.read_csv('aphro.csv',sep=';')

...

MemoryError: 

有什么帮助吗?


当前回答

你可以尝试sframe,它和pandas有相同的语法,但是允许你操作比你的RAM大的文件。

其他回答

你可以尝试sframe,它和pandas有相同的语法,但是允许你操作比你的RAM大的文件。

我是这样说的:

chunks=pd.read_table('aphro.csv',chunksize=1000000,sep=';',\
       names=['lat','long','rf','date','slno'],index_col='slno',\
       header=None,parse_dates=['date'])

df=pd.DataFrame()
%time df=pd.concat(chunk.groupby(['lat','long',chunk['date'].map(lambda x: x.year)])['rf'].agg(['sum']) for chunk in chunks)

如果有人还在寻找这样的东西,我发现这个名为modin的新库可以提供帮助。它使用分布式计算来帮助读取。这里有一篇不错的文章将其功能与熊猫进行了比较。它本质上使用与熊猫相同的功能。

import modin.pandas as pd
pd.read_csv(CSV_FILE_NAME)

如果您使用pandas将大文件读入块,然后逐行yield,这是我所做的

import pandas as pd

def chunck_generator(filename, header=False,chunk_size = 10 ** 5):
   for chunk in pd.read_csv(filename,delimiter=',', iterator=True, chunksize=chunk_size, parse_dates=[1] ): 
        yield (chunk)

def _generator( filename, header=False,chunk_size = 10 ** 5):
    chunk = chunck_generator(filename, header=False,chunk_size = 10 ** 5)
    for row in chunk:
        yield row

if __name__ == "__main__":
filename = r'file.csv'
        generator = generator(filename=filename)
        while True:
           print(next(generator))

在使用chunksize选项之前,如果你想确定你想要在@unutbu提到的分块for循环中写入的进程函数,你可以简单地使用nrows选项。

small_df = pd.read_csv(filename, nrows=100)

一旦确定流程块准备好了,就可以将其放入整个数据帧的分块for循环中。