一般来说,有没有一种有效的方法可以知道Python中的迭代器中有多少个元素,而不用遍历每个元素并计数?


当前回答

假设,您希望在不遍历的情况下计算项的数量,这样迭代器就不会耗尽,稍后可以再次使用它。这是可能的复制或深度复制

import copy

def get_iter_len(iterator):
    return sum(1 for _ in copy.copy(iterator))

###############################################

iterator = range(0, 10)
print(get_iter_len(iterator))

if len(tuple(iterator)) > 1:
    print("Finding the length did not exhaust the iterator!")
else:
    print("oh no! it's all gone")

输出是“查找长度没有耗尽迭代器!”

可选的(并且不明智的),你可以像下面这样为内置的len函数添加阴影:

import copy

def len(obj, *, len=len):
    try:
        if hasattr(obj, "__len__"):
            r = len(obj)
        elif hasattr(obj, "__next__"):
            r = sum(1 for _ in copy.copy(obj))
        else:
            r = len(obj)
    finally:
        pass
    return r

其他回答

不能(除非特定迭代器的类型实现了一些特定的方法,使之成为可能)。

通常,只能通过使用迭代器来计数迭代器项。最有效的方法之一:

import itertools
from collections import deque

def count_iter_items(iterable):
    """
    Consume an iterable not reading it into memory; return the number of items.
    """
    counter = itertools.count()
    deque(itertools.izip(iterable, counter), maxlen=0)  # (consume at C speed)
    return next(counter)

(对于Python 3。X替换itertools。Izip with zip)。

所以,对于那些想知道讨论总结的人。使用以下方法计算5000万长度生成器表达式的最终最高分:

len(列表(创)), Len ([_ for _ in gen]), Sum (1 for _ in gen), Ilen (gen) (from more_itertool), Reduce (c, i: c + 1, gen, 0),

按执行性能排序(包括内存消耗),会让你大吃一惊:

```

1: test_list.py: 8:0.492 KiB

gen = (i for i in data*1000); t0 = monotonic(); len(list(gen))

('list, sec', 1.9684218849870376)

2: test_list_compr.py: 8:0.867 KiB

gen = (i for i in data*1000); t0 = monotonic(); len([i for i in gen])

('list_compr, sec', 2.5885991149989422)

3: test_sum.py:8: 0.859 KiB

gen = (i for i in data*1000); t0 = monotonic(); sum(1 for i in gen); t1 = monotonic()

('sum, sec', 3.441088170016883)

4: more_itertools/more.py:413: 1.266 KiB

d = deque(enumerate(iterable, 1), maxlen=1)

test_ilen.py:10: 0.875 KiB
gen = (i for i in data*1000); t0 = monotonic(); ilen(gen)

(ilen, sec, 9.812256851990242)

5: test_reduce.py:8: 0.859 KiB

gen = (i for i in data*1000); t0 = monotonic(); reduce(lambda counter, i: counter + 1, gen, 0)

('reduce, sec', 13.436614598002052) ' ' '

因此,len(list(gen))是使用频率最高且占用内存较少的

这段代码应该工作:

>>> iter = (i for i in range(50))
>>> sum(1 for _ in iter)
50

尽管它确实遍历每一项并计算它们,但这是最快的方法。

它也适用于迭代器中没有项的情况:

>>> sum(1 for _ in range(0))
0

当然,对于一个无限的输入,它会一直运行,所以请记住迭代器可以是无限的:

>>> sum(1 for _ in itertools.count())
[nothing happens, forever]

此外,请注意,这样做将耗尽迭代器,并且进一步尝试使用它将看不到任何元素。这是Python迭代器设计的一个不可避免的结果。如果你想保留元素,你就必须把它们存储在一个列表或其他东西中。

这违背了迭代器的定义,迭代器是一个指向对象的指针,加上如何到达下一个对象的信息。

迭代器不知道在终止之前它还能迭代多少次。这个可以是无穷,所以无穷可能是你的答案。

不。这是不可能的。

例子:

import random

def gen(n):
    for i in xrange(n):
        if random.randint(0, 1) == 0:
            yield i

iterator = gen(10)

迭代器的长度是未知的,直到迭代遍历它。