如何按特定键的值对词典列表进行排序?鉴于:

[{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]

按名称排序时,应为:

[{'name': 'Bart', 'age': 10}, {'name': 'Homer', 'age': 39}]

当前回答

您可以使用自定义比较函数,也可以传入计算自定义排序键的函数。这通常更有效,因为每个项只计算一次键,而比较函数将被调用多次。

你可以这样做:

def mykey(adict): return adict['name']
x = [{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age':10}]
sorted(x, key=mykey)

但是标准库包含一个获取任意对象项的通用例程:itemgetter。因此,请尝试以下操作:

from operator import itemgetter
x = [{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age':10}]
sorted(x, key=itemgetter('name'))

其他回答

使用来自Perl的Schwartzian变换,

py = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}]

do

sort_on = "name"
decorated = [(dict_[sort_on], dict_) for dict_ in py]
decorated.sort()
result = [dict_ for (key, dict_) in decorated]

给予

>>> result
[{'age': 10, 'name': 'Bart'}, {'age': 39, 'name': 'Homer'}]

有关Perl Schwartzian转换的更多信息:

在计算机科学中,施瓦茨变换是一种Perl编程用于提高项目列表排序效率的习惯用法。这当排序为实际上基于元素,其中计算该属性是一项密集的操作应执行最少次数。施瓦茨学派Transform的显著之处在于它不使用命名的临时数组。

使用Pandas包是另一种方法,尽管其大规模运行时比其他人提出的更传统的方法慢得多:

import pandas as pd

listOfDicts = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}]
df = pd.DataFrame(listOfDicts)
df = df.sort_values('name')
sorted_listOfDicts = df.T.to_dict().values()

下面是一个小列表和一个大(100k+)的字典列表的一些基准值:

setup_large = "listOfDicts = [];\
[listOfDicts.extend(({'name':'Homer', 'age':39}, {'name':'Bart', 'age':10})) for _ in range(50000)];\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(listOfDicts);"

setup_small = "listOfDicts = [];\
listOfDicts.extend(({'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}));\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(listOfDicts);"

method1 = "newlist = sorted(listOfDicts, key=lambda k: k['name'])"
method2 = "newlist = sorted(listOfDicts, key=itemgetter('name')) "
method3 = "df = df.sort_values('name');\
sorted_listOfDicts = df.T.to_dict().values()"

import timeit
t = timeit.Timer(method1, setup_small)
print('Small Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_small)
print('Small Method LC2: ' + str(t.timeit(100)))
t = timeit.Timer(method3, setup_small)
print('Small Method Pandas: ' + str(t.timeit(100)))

t = timeit.Timer(method1, setup_large)
print('Large Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_large)
print('Large Method LC2: ' + str(t.timeit(100)))
t = timeit.Timer(method3, setup_large)
print('Large Method Pandas: ' + str(t.timeit(1)))

#Small Method LC: 0.000163078308105
#Small Method LC2: 0.000134944915771
#Small Method Pandas: 0.0712950229645
#Large Method LC: 0.0321750640869
#Large Method LC2: 0.0206089019775
#Large Method Pandas: 5.81405615807

您可以使用自定义比较函数,也可以传入计算自定义排序键的函数。这通常更有效,因为每个项只计算一次键,而比较函数将被调用多次。

你可以这样做:

def mykey(adict): return adict['name']
x = [{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age':10}]
sorted(x, key=mykey)

但是标准库包含一个获取任意对象项的通用例程:itemgetter。因此,请尝试以下操作:

from operator import itemgetter
x = [{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age':10}]
sorted(x, key=itemgetter('name'))

如果不需要字典的原始列表,可以使用自定义键函数使用sort()方法对其进行修改。

关键功能:

def get_name(d):
    """ Return the value of a key in a dictionary. """

    return d["name"]

要排序的列表:

data_one = [{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]

将其分类到位:

data_one.sort(key=get_name)

如果需要原始列表,请调用sorted()函数,将列表和键函数传递给它,然后将返回的排序列表分配给新变量:

data_two = [{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]
new_data = sorted(data_two, key=get_name)

正在打印data_one和new_data。

>>> print(data_one)
[{'name': 'Bart', 'age': 10}, {'name': 'Homer', 'age': 39}]
>>> print(new_data)
[{'name': 'Bart', 'age': 10}, {'name': 'Homer', 'age': 39}]

按多个列排序,其中一些列按降序排序:cmps数组是cmp函数的全局数组,包含字段名,对于desc,inv==-1,对于asc

def cmpfun(a, b):
    for (name, inv) in cmps:
        res = cmp(a[name], b[name])
        if res != 0:
            return res * inv
    return 0

data = [
    dict(name='alice', age=10), 
    dict(name='baruch', age=9), 
    dict(name='alice', age=11),
]

all_cmps = [
    [('name', 1), ('age', -1)], 
    [('name', 1), ('age', 1)], 
    [('name', -1), ('age', 1)],]

print 'data:', data
for cmps in all_cmps: print 'sort:', cmps; print sorted(data, cmpfun)