给定以下二维数组:

a = np.array([
    [1, 2, 3],
    [2, 3, 4],
])

我想在第二轴上加上一列0,得到:

b = np.array([
    [1, 2, 3, 0],
    [2, 3, 4, 0],
])

当前回答

我喜欢这个:

new_column = np.zeros((len(a), 1))
b = np.block([a, new_column])

其他回答

我认为:

np.column_stack((a, zeros(shape(a)[0])))

更优雅。

有点晚了,但还没有人发布这个答案,所以为了完整起见:你可以在一个普通的Python数组上使用列表推导式来完成:

source = a.tolist()
result = [row + [0] for row in source]
b = np.array(result)

有一个专门的函数。它被称为numpy.pad

a = np.array([[1,2,3], [2,3,4]])
b = np.pad(a, ((0, 0), (0, 1)), mode='constant', constant_values=0)
print b
>>> array([[1, 2, 3, 0],
           [2, 3, 4, 0]])

以下是它在文档字符串中所说的:

Pads an array.

Parameters
----------
array : array_like of rank N
    Input array
pad_width : {sequence, array_like, int}
    Number of values padded to the edges of each axis.
    ((before_1, after_1), ... (before_N, after_N)) unique pad widths
    for each axis.
    ((before, after),) yields same before and after pad for each axis.
    (pad,) or int is a shortcut for before = after = pad width for all
    axes.
mode : str or function
    One of the following string values or a user supplied function.

    'constant'
        Pads with a constant value.
    'edge'
        Pads with the edge values of array.
    'linear_ramp'
        Pads with the linear ramp between end_value and the
        array edge value.
    'maximum'
        Pads with the maximum value of all or part of the
        vector along each axis.
    'mean'
        Pads with the mean value of all or part of the
        vector along each axis.
    'median'
        Pads with the median value of all or part of the
        vector along each axis.
    'minimum'
        Pads with the minimum value of all or part of the
        vector along each axis.
    'reflect'
        Pads with the reflection of the vector mirrored on
        the first and last values of the vector along each
        axis.
    'symmetric'
        Pads with the reflection of the vector mirrored
        along the edge of the array.
    'wrap'
        Pads with the wrap of the vector along the axis.
        The first values are used to pad the end and the
        end values are used to pad the beginning.
    <function>
        Padding function, see Notes.
stat_length : sequence or int, optional
    Used in 'maximum', 'mean', 'median', and 'minimum'.  Number of
    values at edge of each axis used to calculate the statistic value.

    ((before_1, after_1), ... (before_N, after_N)) unique statistic
    lengths for each axis.

    ((before, after),) yields same before and after statistic lengths
    for each axis.

    (stat_length,) or int is a shortcut for before = after = statistic
    length for all axes.

    Default is ``None``, to use the entire axis.
constant_values : sequence or int, optional
    Used in 'constant'.  The values to set the padded values for each
    axis.

    ((before_1, after_1), ... (before_N, after_N)) unique pad constants
    for each axis.

    ((before, after),) yields same before and after constants for each
    axis.

    (constant,) or int is a shortcut for before = after = constant for
    all axes.

    Default is 0.
end_values : sequence or int, optional
    Used in 'linear_ramp'.  The values used for the ending value of the
    linear_ramp and that will form the edge of the padded array.

    ((before_1, after_1), ... (before_N, after_N)) unique end values
    for each axis.

    ((before, after),) yields same before and after end values for each
    axis.

    (constant,) or int is a shortcut for before = after = end value for
    all axes.

    Default is 0.
reflect_type : {'even', 'odd'}, optional
    Used in 'reflect', and 'symmetric'.  The 'even' style is the
    default with an unaltered reflection around the edge value.  For
    the 'odd' style, the extented part of the array is created by
    subtracting the reflected values from two times the edge value.

Returns
-------
pad : ndarray
    Padded array of rank equal to `array` with shape increased
    according to `pad_width`.

Notes
-----
.. versionadded:: 1.7.0

For an array with rank greater than 1, some of the padding of later
axes is calculated from padding of previous axes.  This is easiest to
think about with a rank 2 array where the corners of the padded array
are calculated by using padded values from the first axis.

The padding function, if used, should return a rank 1 array equal in
length to the vector argument with padded values replaced. It has the
following signature::

    padding_func(vector, iaxis_pad_width, iaxis, kwargs)

where

    vector : ndarray
        A rank 1 array already padded with zeros.  Padded values are
        vector[:pad_tuple[0]] and vector[-pad_tuple[1]:].
    iaxis_pad_width : tuple
        A 2-tuple of ints, iaxis_pad_width[0] represents the number of
        values padded at the beginning of vector where
        iaxis_pad_width[1] represents the number of values padded at
        the end of vector.
    iaxis : int
        The axis currently being calculated.
    kwargs : dict
        Any keyword arguments the function requires.

Examples
--------
>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2,3), 'constant', constant_values=(4, 6))
array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])

>>> np.pad(a, (2, 3), 'edge')
array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])

>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([ 5,  3,  1,  2,  3,  4,  5,  2, -1, -4])

>>> np.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])

>>> np.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> np.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> a = [[1, 2], [3, 4]]
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
       [1, 1, 1, 2, 1, 1, 1],
       [1, 1, 1, 2, 1, 1, 1],
       [1, 1, 1, 2, 1, 1, 1],
       [3, 3, 3, 4, 3, 3, 3],
       [1, 1, 1, 2, 1, 1, 1],
       [1, 1, 1, 2, 1, 1, 1]])

>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])

>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1,  0,  1,  2,  3,  4,  5,  6,  7,  8])

>>> np.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])

>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])

>>> np.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])

>>> def pad_with(vector, pad_width, iaxis, kwargs):
...     pad_value = kwargs.get('padder', 10)
...     vector[:pad_width[0]] = pad_value
...     vector[-pad_width[1]:] = pad_value
...     return vector
>>> a = np.arange(6)
>>> a = a.reshape((2, 3))
>>> np.pad(a, 2, pad_with)
array([[10, 10, 10, 10, 10, 10, 10],
       [10, 10, 10, 10, 10, 10, 10],
       [10, 10,  0,  1,  2, 10, 10],
       [10, 10,  3,  4,  5, 10, 10],
       [10, 10, 10, 10, 10, 10, 10],
       [10, 10, 10, 10, 10, 10, 10]])
>>> np.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],
       [100, 100, 100, 100, 100, 100, 100],
       [100, 100,   0,   1,   2, 100, 100],
       [100, 100,   3,   4,   5, 100, 100],
       [100, 100, 100, 100, 100, 100, 100],
       [100, 100, 100, 100, 100, 100, 100]])

我喜欢JoshAdel的回答,因为他关注的是表现。一个较小的性能改进是避免使用零进行初始化的开销,而这些初始化只会被覆盖。当N很大时,这有一个可测量的差异,用空代替零,零的列被写成一个单独的步骤:

In [1]: import numpy as np

In [2]: N = 10000

In [3]: a = np.ones((N,N))

In [4]: %timeit b = np.zeros((a.shape[0],a.shape[1]+1)); b[:,:-1] = a
1 loops, best of 3: 492 ms per loop

In [5]: %timeit b = np.empty((a.shape[0],a.shape[1]+1)); b[:,:-1] = a; b[:,-1] = np.zeros((a.shape[0],))
1 loops, best of 3: 407 ms per loop

np。r_[…和np.c_[…]] 是vstack和hstack的有用替代品, 用方括号[]代替圆括号()。 举几个例子:

: import numpy as np
: N = 3
: A = np.eye(N)

: np.c_[ A, np.ones(N) ]              # add a column
array([[ 1.,  0.,  0.,  1.],
       [ 0.,  1.,  0.,  1.],
       [ 0.,  0.,  1.,  1.]])

: np.c_[ np.ones(N), A, np.ones(N) ]  # or two
array([[ 1.,  1.,  0.,  0.,  1.],
       [ 1.,  0.,  1.,  0.,  1.],
       [ 1.,  0.,  0.,  1.,  1.]])

: np.r_[ A, [A[1]] ]              # add a row
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  1.,  0.]])
: # not np.r_[ A, A[1] ]

: np.r_[ A[0], 1, 2, 3, A[1] ]    # mix vecs and scalars
  array([ 1.,  0.,  0.,  1.,  2.,  3.,  0.,  1.,  0.])

: np.r_[ A[0], [1, 2, 3], A[1] ]  # lists
  array([ 1.,  0.,  0.,  1.,  2.,  3.,  0.,  1.,  0.])

: np.r_[ A[0], (1, 2, 3), A[1] ]  # tuples
  array([ 1.,  0.,  0.,  1.,  2.,  3.,  0.,  1.,  0.])

: np.r_[ A[0], 1:4, A[1] ]        # same, 1:4 == arange(1,4) == 1,2,3
  array([ 1.,  0.,  0.,  1.,  2.,  3.,  0.,  1.,  0.])

用方括号[]代替圆括号()的原因 Python是否在square中展开了例如1:4 超载的奇迹。)