给定以下二维数组:

a = np.array([
    [1, 2, 3],
    [2, 3, 4],
])

我想在第二轴上加上一列0,得到:

b = np.array([
    [1, 2, 3, 0],
    [2, 3, 4, 0],
])

当前回答

在numpy数组中添加一个额外的列:

Numpy np。append方法有三个参数,前两个是2D numpy数组,第三个是一个轴参数,指示沿哪个轴追加:

import numpy as np  
x = np.array([[1,2,3], [4,5,6]]) 
print("Original x:") 
print(x) 

y = np.array([[1], [1]]) 
print("Original y:") 
print(y) 

print("x appended to y on axis of 1:") 
print(np.append(x, y, axis=1)) 

打印:

Original x:
[[1 2 3]
 [4 5 6]]
Original y:
[[1]
 [1]]
y appended to x on axis of 1:
[[1 2 3 1]
 [4 5 6 1]]

其他回答

使用numpy.append:

>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
       [2, 3, 4]])

>>> z = np.zeros((2,1), dtype=int64)
>>> z
array([[0],
       [0]])

>>> np.append(a, z, axis=1)
array([[1, 2, 3, 0],
       [2, 3, 4, 0]])

我觉得下面这些最优雅:

b = np.insert(a, 3, values=0, axis=1) # Insert values before column 3

插入的一个优点是它还允许您在数组中的其他位置插入列(或行)。此外,您可以轻松地插入整个向量,而不是插入单个值,例如复制最后一列:

b = np.insert(a, insert_index, values=a[:,2], axis=1)

这就导致:

array([[1, 2, 3, 3],
       [2, 3, 4, 4]])

对于时间,insert可能比JoshAdel的解决方案慢:

In [1]: N = 10

In [2]: a = np.random.rand(N,N)

In [3]: %timeit b = np.hstack((a, np.zeros((a.shape[0], 1))))
100000 loops, best of 3: 7.5 µs per loop

In [4]: %timeit b = np.zeros((a.shape[0], a.shape[1]+1)); b[:,:-1] = a
100000 loops, best of 3: 2.17 µs per loop

In [5]: %timeit b = np.insert(a, 3, values=0, axis=1)
100000 loops, best of 3: 10.2 µs per loop

在我的例子中,我必须向NumPy数组中添加一列1

X = array([ 6.1101, 5.5277, ... ])
X.shape => (97,)
X = np.concatenate((np.ones((m,1), dtype=np.int), X.reshape(m,1)), axis=1)

后 X.shape => (97,2)

array([[ 1. , 6.1101],
       [ 1. , 5.5277],
...

我认为:

np.column_stack((a, zeros(shape(a)[0])))

更优雅。

我也对这个问题感兴趣,比较了速度

numpy.c_[a, a]
numpy.stack([a, a]).T
numpy.vstack([a, a]).T
numpy.ascontiguousarray(numpy.stack([a, a]).T)               
numpy.ascontiguousarray(numpy.vstack([a, a]).T)
numpy.column_stack([a, a])
numpy.concatenate([a[:,None], a[:,None]], axis=1)
numpy.concatenate([a[None], a[None]], axis=0).T

它们对任何输入向量a都做同样的事情。增长a的时间:

注意,所有不连续的变量(特别是stack/vstack)最终都比所有连续的变量快。如果需要连续,Column_stack(因为它的清晰性和速度)似乎是一个不错的选择。


代码重现情节:

import numpy as np
import perfplot

b = perfplot.bench(
    setup=np.random.rand,
    kernels=[
        lambda a: np.c_[a, a],
        lambda a: np.ascontiguousarray(np.stack([a, a]).T),
        lambda a: np.ascontiguousarray(np.vstack([a, a]).T),
        lambda a: np.column_stack([a, a]),
        lambda a: np.concatenate([a[:, None], a[:, None]], axis=1),
        lambda a: np.ascontiguousarray(np.concatenate([a[None], a[None]], axis=0).T),
        lambda a: np.stack([a, a]).T,
        lambda a: np.vstack([a, a]).T,
        lambda a: np.concatenate([a[None], a[None]], axis=0).T,
    ],
    labels=[
        "c_",
        "ascont(stack)",
        "ascont(vstack)",
        "column_stack",
        "concat",
        "ascont(concat)",
        "stack (non-cont)",
        "vstack (non-cont)",
        "concat (non-cont)",
    ],
    n_range=[2 ** k for k in range(23)],
    xlabel="len(a)",
)
b.save("out.png")