给定以下二维数组:
a = np.array([
[1, 2, 3],
[2, 3, 4],
])
我想在第二轴上加上一列0,得到:
b = np.array([
[1, 2, 3, 0],
[2, 3, 4, 0],
])
给定以下二维数组:
a = np.array([
[1, 2, 3],
[2, 3, 4],
])
我想在第二轴上加上一列0,得到:
b = np.array([
[1, 2, 3, 0],
[2, 3, 4, 0],
])
当前回答
np。Concatenate也可以
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
[2, 3, 4]])
>>> z = np.zeros((2,1))
>>> z
array([[ 0.],
[ 0.]])
>>> np.concatenate((a, z), axis=1)
array([[ 1., 2., 3., 0.],
[ 2., 3., 4., 0.]])
其他回答
我喜欢JoshAdel的回答,因为他关注的是表现。一个较小的性能改进是避免使用零进行初始化的开销,而这些初始化只会被覆盖。当N很大时,这有一个可测量的差异,用空代替零,零的列被写成一个单独的步骤:
In [1]: import numpy as np
In [2]: N = 10000
In [3]: a = np.ones((N,N))
In [4]: %timeit b = np.zeros((a.shape[0],a.shape[1]+1)); b[:,:-1] = a
1 loops, best of 3: 492 ms per loop
In [5]: %timeit b = np.empty((a.shape[0],a.shape[1]+1)); b[:,:-1] = a; b[:,-1] = np.zeros((a.shape[0],))
1 loops, best of 3: 407 ms per loop
使用numpy.append:
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
[2, 3, 4]])
>>> z = np.zeros((2,1), dtype=int64)
>>> z
array([[0],
[0]])
>>> np.append(a, z, axis=1)
array([[1, 2, 3, 0],
[2, 3, 4, 0]])
我喜欢这个:
new_column = np.zeros((len(a), 1))
b = np.block([a, new_column])
有点晚了,但还没有人发布这个答案,所以为了完整起见:你可以在一个普通的Python数组上使用列表推导式来完成:
source = a.tolist()
result = [row + [0] for row in source]
b = np.array(result)
在numpy数组中添加一个额外的列:
Numpy np。append方法有三个参数,前两个是2D numpy数组,第三个是一个轴参数,指示沿哪个轴追加:
import numpy as np
x = np.array([[1,2,3], [4,5,6]])
print("Original x:")
print(x)
y = np.array([[1], [1]])
print("Original y:")
print(y)
print("x appended to y on axis of 1:")
print(np.append(x, y, axis=1))
打印:
Original x:
[[1 2 3]
[4 5 6]]
Original y:
[[1]
[1]]
y appended to x on axis of 1:
[[1 2 3 1]
[4 5 6 1]]