给定以下二维数组:

a = np.array([
    [1, 2, 3],
    [2, 3, 4],
])

我想在第二轴上加上一列0,得到:

b = np.array([
    [1, 2, 3, 0],
    [2, 3, 4, 0],
])

当前回答

在我的例子中,我必须向NumPy数组中添加一列1

X = array([ 6.1101, 5.5277, ... ])
X.shape => (97,)
X = np.concatenate((np.ones((m,1), dtype=np.int), X.reshape(m,1)), axis=1)

后 X.shape => (97,2)

array([[ 1. , 6.1101],
       [ 1. , 5.5277],
...

其他回答

我喜欢JoshAdel的回答,因为他关注的是表现。一个较小的性能改进是避免使用零进行初始化的开销,而这些初始化只会被覆盖。当N很大时,这有一个可测量的差异,用空代替零,零的列被写成一个单独的步骤:

In [1]: import numpy as np

In [2]: N = 10000

In [3]: a = np.ones((N,N))

In [4]: %timeit b = np.zeros((a.shape[0],a.shape[1]+1)); b[:,:-1] = a
1 loops, best of 3: 492 ms per loop

In [5]: %timeit b = np.empty((a.shape[0],a.shape[1]+1)); b[:,:-1] = a; b[:,-1] = np.zeros((a.shape[0],))
1 loops, best of 3: 407 ms per loop

np。r_[…和np.c_[…]] 是vstack和hstack的有用替代品, 用方括号[]代替圆括号()。 举几个例子:

: import numpy as np
: N = 3
: A = np.eye(N)

: np.c_[ A, np.ones(N) ]              # add a column
array([[ 1.,  0.,  0.,  1.],
       [ 0.,  1.,  0.,  1.],
       [ 0.,  0.,  1.,  1.]])

: np.c_[ np.ones(N), A, np.ones(N) ]  # or two
array([[ 1.,  1.,  0.,  0.,  1.],
       [ 1.,  0.,  1.,  0.,  1.],
       [ 1.,  0.,  0.,  1.,  1.]])

: np.r_[ A, [A[1]] ]              # add a row
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  1.,  0.]])
: # not np.r_[ A, A[1] ]

: np.r_[ A[0], 1, 2, 3, A[1] ]    # mix vecs and scalars
  array([ 1.,  0.,  0.,  1.,  2.,  3.,  0.,  1.,  0.])

: np.r_[ A[0], [1, 2, 3], A[1] ]  # lists
  array([ 1.,  0.,  0.,  1.,  2.,  3.,  0.,  1.,  0.])

: np.r_[ A[0], (1, 2, 3), A[1] ]  # tuples
  array([ 1.,  0.,  0.,  1.,  2.,  3.,  0.,  1.,  0.])

: np.r_[ A[0], 1:4, A[1] ]        # same, 1:4 == arange(1,4) == 1,2,3
  array([ 1.,  0.,  0.,  1.,  2.,  3.,  0.,  1.,  0.])

用方括号[]代替圆括号()的原因 Python是否在square中展开了例如1:4 超载的奇迹。)

我喜欢这个:

new_column = np.zeros((len(a), 1))
b = np.block([a, new_column])

假设M是一个(100,3)ndarray, y是一个(100,)ndarray追加可以这样使用:

M=numpy.append(M,y[:,None],1)

诀窍在于使用

y[:, None]

这将y转换为(100,1)2D数组。

M.shape

现在给

(100, 4)

np。Concatenate也可以

>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
       [2, 3, 4]])
>>> z = np.zeros((2,1))
>>> z
array([[ 0.],
       [ 0.]])
>>> np.concatenate((a, z), axis=1)
array([[ 1.,  2.,  3.,  0.],
       [ 2.,  3.,  4.,  0.]])