给定以下二维数组:
a = np.array([
[1, 2, 3],
[2, 3, 4],
])
我想在第二轴上加上一列0,得到:
b = np.array([
[1, 2, 3, 0],
[2, 3, 4, 0],
])
给定以下二维数组:
a = np.array([
[1, 2, 3],
[2, 3, 4],
])
我想在第二轴上加上一列0,得到:
b = np.array([
[1, 2, 3, 0],
[2, 3, 4, 0],
])
当前回答
在我的例子中,我必须向NumPy数组中添加一列1
X = array([ 6.1101, 5.5277, ... ])
X.shape => (97,)
X = np.concatenate((np.ones((m,1), dtype=np.int), X.reshape(m,1)), axis=1)
后 X.shape => (97,2)
array([[ 1. , 6.1101],
[ 1. , 5.5277],
...
其他回答
有点晚了,但还没有人发布这个答案,所以为了完整起见:你可以在一个普通的Python数组上使用列表推导式来完成:
source = a.tolist()
result = [row + [0] for row in source]
b = np.array(result)
使用numpy.append:
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
[2, 3, 4]])
>>> z = np.zeros((2,1), dtype=int64)
>>> z
array([[0],
[0]])
>>> np.append(a, z, axis=1)
array([[1, 2, 3, 0],
[2, 3, 4, 0]])
np。r_[…和np.c_[…]] 是vstack和hstack的有用替代品, 用方括号[]代替圆括号()。 举几个例子:
: import numpy as np
: N = 3
: A = np.eye(N)
: np.c_[ A, np.ones(N) ] # add a column
array([[ 1., 0., 0., 1.],
[ 0., 1., 0., 1.],
[ 0., 0., 1., 1.]])
: np.c_[ np.ones(N), A, np.ones(N) ] # or two
array([[ 1., 1., 0., 0., 1.],
[ 1., 0., 1., 0., 1.],
[ 1., 0., 0., 1., 1.]])
: np.r_[ A, [A[1]] ] # add a row
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.],
[ 0., 1., 0.]])
: # not np.r_[ A, A[1] ]
: np.r_[ A[0], 1, 2, 3, A[1] ] # mix vecs and scalars
array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.])
: np.r_[ A[0], [1, 2, 3], A[1] ] # lists
array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.])
: np.r_[ A[0], (1, 2, 3), A[1] ] # tuples
array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.])
: np.r_[ A[0], 1:4, A[1] ] # same, 1:4 == arange(1,4) == 1,2,3
array([ 1., 0., 0., 1., 2., 3., 0., 1., 0.])
用方括号[]代替圆括号()的原因 Python是否在square中展开了例如1:4 超载的奇迹。)
假设M是一个(100,3)ndarray, y是一个(100,)ndarray追加可以这样使用:
M=numpy.append(M,y[:,None],1)
诀窍在于使用
y[:, None]
这将y转换为(100,1)2D数组。
M.shape
现在给
(100, 4)
对我来说,下一种方法看起来非常直观和简单。
zeros = np.zeros((2,1)) #2 is a number of rows in your array.
b = np.hstack((a, zeros))