给定以下二维数组:
a = np.array([
[1, 2, 3],
[2, 3, 4],
])
我想在第二轴上加上一列0,得到:
b = np.array([
[1, 2, 3, 0],
[2, 3, 4, 0],
])
给定以下二维数组:
a = np.array([
[1, 2, 3],
[2, 3, 4],
])
我想在第二轴上加上一列0,得到:
b = np.array([
[1, 2, 3, 0],
[2, 3, 4, 0],
])
当前回答
使用hstack的一种方法是:
b = np.hstack((a, np.zeros((a.shape[0], 1), dtype=a.dtype)))
其他回答
使用hstack的一种方法是:
b = np.hstack((a, np.zeros((a.shape[0], 1), dtype=a.dtype)))
使用numpy.append:
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
[2, 3, 4]])
>>> z = np.zeros((2,1), dtype=int64)
>>> z
array([[0],
[0]])
>>> np.append(a, z, axis=1)
array([[1, 2, 3, 0],
[2, 3, 4, 0]])
我认为一个更直接的解决方案和更快的启动是做以下工作:
import numpy as np
N = 10
a = np.random.rand(N,N)
b = np.zeros((N,N+1))
b[:,:-1] = a
和时间:
In [23]: N = 10
In [24]: a = np.random.rand(N,N)
In [25]: %timeit b = np.hstack((a,np.zeros((a.shape[0],1))))
10000 loops, best of 3: 19.6 us per loop
In [27]: %timeit b = np.zeros((a.shape[0],a.shape[1]+1)); b[:,:-1] = a
100000 loops, best of 3: 5.62 us per loop
我喜欢这个:
new_column = np.zeros((len(a), 1))
b = np.block([a, new_column])
有点晚了,但还没有人发布这个答案,所以为了完整起见:你可以在一个普通的Python数组上使用列表推导式来完成:
source = a.tolist()
result = [row + [0] for row in source]
b = np.array(result)