给定以下二维数组:

a = np.array([
    [1, 2, 3],
    [2, 3, 4],
])

我想在第二轴上加上一列0,得到:

b = np.array([
    [1, 2, 3, 0],
    [2, 3, 4, 0],
])

当前回答

使用hstack的一种方法是:

b = np.hstack((a, np.zeros((a.shape[0], 1), dtype=a.dtype)))

其他回答

np。插入也可以。

matA = np.array([[1,2,3], 
                 [2,3,4]])
idx = 3
new_col = np.array([0, 0])
np.insert(matA, idx, new_col, axis=1)

array([[1, 2, 3, 0],
       [2, 3, 4, 0]])

它沿着一个轴插入值,这里是new_col,在给定索引之前,这里是idx。换句话说,新插入的值将占据idx列,并将最初在idx处和之后的值向后移动。

我认为一个更直接的解决方案和更快的启动是做以下工作:

import numpy as np
N = 10
a = np.random.rand(N,N)
b = np.zeros((N,N+1))
b[:,:-1] = a

和时间:

In [23]: N = 10

In [24]: a = np.random.rand(N,N)

In [25]: %timeit b = np.hstack((a,np.zeros((a.shape[0],1))))
10000 loops, best of 3: 19.6 us per loop

In [27]: %timeit b = np.zeros((a.shape[0],a.shape[1]+1)); b[:,:-1] = a
100000 loops, best of 3: 5.62 us per loop

有点晚了,但还没有人发布这个答案,所以为了完整起见:你可以在一个普通的Python数组上使用列表推导式来完成:

source = a.tolist()
result = [row + [0] for row in source]
b = np.array(result)

我喜欢这个:

new_column = np.zeros((len(a), 1))
b = np.block([a, new_column])

假设M是一个(100,3)ndarray, y是一个(100,)ndarray追加可以这样使用:

M=numpy.append(M,y[:,None],1)

诀窍在于使用

y[:, None]

这将y转换为(100,1)2D数组。

M.shape

现在给

(100, 4)