我试图使用scikit-learn的LabelEncoder来编码字符串标签的pandas DataFrame。由于数据帧有许多(50+)列,我想避免为每一列创建一个LabelEncoder对象;我宁愿只有一个大的LabelEncoder对象,它可以跨所有数据列工作。

将整个DataFrame扔到LabelEncoder中会产生以下错误。请记住,我在这里使用的是虚拟数据;实际上,我正在处理大约50列的字符串标记数据,所以需要一个解决方案,不引用任何列的名称。

import pandas
from sklearn import preprocessing 

df = pandas.DataFrame({
    'pets': ['cat', 'dog', 'cat', 'monkey', 'dog', 'dog'], 
    'owner': ['Champ', 'Ron', 'Brick', 'Champ', 'Veronica', 'Ron'], 
    'location': ['San_Diego', 'New_York', 'New_York', 'San_Diego', 'San_Diego', 
                 'New_York']
})

le = preprocessing.LabelEncoder()

le.fit(df)

回溯(最近一次调用): 文件“”,第1行,在 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/预处理/label.py",第103行 y = column_or_1d(y, warn=True) 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py",第306行,在column_or_1d中 raise ValueError("错误的输入形状{0}".format(形状)) ValueError:错误的输入形状(6,3)

对于如何解决这个问题有什么想法吗?


当前回答

这是有可能做到这一切直接在熊猫,是非常适合的独特能力的替代方法。

首先,让我们创建一个字典的字典,将列及其值映射到新的替换值。

transform_dict = {}
for col in df.columns:
    cats = pd.Categorical(df[col]).categories
    d = {}
    for i, cat in enumerate(cats):
        d[cat] = i
    transform_dict[col] = d

transform_dict
{'location': {'New_York': 0, 'San_Diego': 1},
 'owner': {'Brick': 0, 'Champ': 1, 'Ron': 2, 'Veronica': 3},
 'pets': {'cat': 0, 'dog': 1, 'monkey': 2}}

由于这将始终是一个一对一的映射,我们可以反转内部字典以获得新值到原始值的映射。

inverse_transform_dict = {}
for col, d in transform_dict.items():
    inverse_transform_dict[col] = {v:k for k, v in d.items()}

inverse_transform_dict
{'location': {0: 'New_York', 1: 'San_Diego'},
 'owner': {0: 'Brick', 1: 'Champ', 2: 'Ron', 3: 'Veronica'},
 'pets': {0: 'cat', 1: 'dog', 2: 'monkey'}}

现在,我们可以使用replace方法的独特功能来获取一个嵌套的字典列表,并使用外部键作为列,使用内部键作为我们想要替换的值。

df.replace(transform_dict)
   location  owner  pets
0         1      1     0
1         0      2     1
2         0      0     0
3         1      1     2
4         1      3     1
5         0      2     1

通过再次链接replace方法,我们可以很容易地回到原来的方法

df.replace(transform_dict).replace(inverse_transform_dict)
    location     owner    pets
0  San_Diego     Champ     cat
1   New_York       Ron     dog
2   New_York     Brick     cat
3  San_Diego     Champ  monkey
4  San_Diego  Veronica     dog
5   New_York       Ron     dog

其他回答

我们不需要LabelEncoder。

您可以将列转换为类别,然后获取它们的代码。我使用下面的字典推导将此过程应用于每一列,并将结果包装回具有相同索引和列名的相同形状的数据框架中。

>>> pd.DataFrame({col: df[col].astype('category').cat.codes for col in df}, index=df.index)
   location  owner  pets
0         1      1     0
1         0      2     1
2         0      0     0
3         1      1     2
4         1      3     1
5         0      2     1

要创建映射字典,你可以使用字典理解式枚举类别:

>>> {col: {n: cat for n, cat in enumerate(df[col].astype('category').cat.categories)} 
     for col in df}

{'location': {0: 'New_York', 1: 'San_Diego'},
 'owner': {0: 'Brick', 1: 'Champ', 2: 'Ron', 3: 'Veronica'},
 'pets': {0: 'cat', 1: 'dog', 2: 'monkey'}}

你可以很容易地做到,

df.apply(LabelEncoder().fit_transform)

EDIT2:

在scikit-learn 0.20中,推荐的方法是

OneHotEncoder().fit_transform(df)

因为OneHotEncoder现在支持字符串输入。 使用ColumnTransformer可以只对某些列应用OneHotEncoder。

编辑:

由于这个最初的答案是一年多前的,并获得了许多赞(包括赏金),我可能应该进一步扩展它。

对于inverse_transform和transform,你需要做一点修改。

from collections import defaultdict
d = defaultdict(LabelEncoder)

这样,您现在将所有列LabelEncoder保留为字典。

# Encoding the variable
fit = df.apply(lambda x: d[x.name].fit_transform(x))

# Inverse the encoded
fit.apply(lambda x: d[x.name].inverse_transform(x))

# Using the dictionary to label future data
df.apply(lambda x: d[x.name].transform(x))

MOAR编辑:

使用Neuraxle的flatforeach步骤,也可以在一次对所有平坦数据使用相同的LabelEncoder:

FlattenForEach(LabelEncoder(), then_unflatten=True).fit_transform(df)

要根据数据列使用单独的LabelEncoders,或者如果只有一些数据列需要进行标签编码,而不需要其他数据列,那么使用ColumnTransformer是一种解决方案,它允许对列选择和LabelEncoder实例进行更多控制。

这个怎么样?

def MultiColumnLabelEncode(choice, columns, X):
    LabelEncoders = []
    if choice == 'encode':
        for i in enumerate(columns):
            LabelEncoders.append(LabelEncoder())
        i=0    
        for cols in columns:
            X[:, cols] = LabelEncoders[i].fit_transform(X[:, cols])
            i += 1
    elif choice == 'decode': 
        for cols in columns:
            X[:, cols] = LabelEncoders[i].inverse_transform(X[:, cols])
            i += 1
    else:
        print('Please select correct parameter "choice". Available parameters: encode/decode')

这不是最有效的,但它工作,它是超级简单。

不,LabelEncoder不这样做。它接受类标签的1维数组并生成1维数组。它的设计目的是处理分类问题中的类标签,而不是任意数据,任何强迫它用于其他用途的尝试都需要代码将实际问题转换为它解决的问题(并将解决方案转换回原始空间)。

使用Neuraxle

TLDR;你可以在这里使用flatforeach包装类简单地转换你的df,如:

使用这种方法,您的标签编码器将能够在常规的scikit-learn Pipeline中适应和转换。让我们简单地导入:

from sklearn.preprocessing import LabelEncoder
from neuraxle.steps.column_transformer import ColumnTransformer
from neuraxle.steps.loop import FlattenForEach

列的共享编码器相同:

下面是一个共享的LabelEncoder将如何应用于所有数据来编码:

    p = FlattenForEach(LabelEncoder(), then_unflatten=True)

结果:

    p, predicted_output = p.fit_transform(df.values)
    expected_output = np.array([
        [6, 7, 6, 8, 7, 7],
        [1, 3, 0, 1, 5, 3],
        [4, 2, 2, 4, 4, 2]
    ]).transpose()
    assert np.array_equal(predicted_output, expected_output)

每列不同的编码器:

这里是第一个独立的LabelEncoder将如何应用于宠物,第二个将为列的所有者和位置共享。所以准确地说,我们这里有一个不同的和共享的标签编码器的组合:

    p = ColumnTransformer([
        # A different encoder will be used for column 0 with name "pets":
        (0, FlattenForEach(LabelEncoder(), then_unflatten=True)),
        # A shared encoder will be used for column 1 and 2, "owner" and "location":
        ([1, 2], FlattenForEach(LabelEncoder(), then_unflatten=True)),
    ], n_dimension=2)

结果:

    p, predicted_output = p.fit_transform(df.values)
    expected_output = np.array([
        [0, 1, 0, 2, 1, 1],
        [1, 3, 0, 1, 5, 3],
        [4, 2, 2, 4, 4, 2]
    ]).transpose()
    assert np.array_equal(predicted_output, expected_output)