我试图使用scikit-learn的LabelEncoder来编码字符串标签的pandas DataFrame。由于数据帧有许多(50+)列,我想避免为每一列创建一个LabelEncoder对象;我宁愿只有一个大的LabelEncoder对象,它可以跨所有数据列工作。

将整个DataFrame扔到LabelEncoder中会产生以下错误。请记住,我在这里使用的是虚拟数据;实际上,我正在处理大约50列的字符串标记数据,所以需要一个解决方案,不引用任何列的名称。

import pandas
from sklearn import preprocessing 

df = pandas.DataFrame({
    'pets': ['cat', 'dog', 'cat', 'monkey', 'dog', 'dog'], 
    'owner': ['Champ', 'Ron', 'Brick', 'Champ', 'Veronica', 'Ron'], 
    'location': ['San_Diego', 'New_York', 'New_York', 'San_Diego', 'San_Diego', 
                 'New_York']
})

le = preprocessing.LabelEncoder()

le.fit(df)

回溯(最近一次调用): 文件“”,第1行,在 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/预处理/label.py",第103行 y = column_or_1d(y, warn=True) 文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py",第306行,在column_or_1d中 raise ValueError("错误的输入形状{0}".format(形状)) ValueError:错误的输入形状(6,3)

对于如何解决这个问题有什么想法吗?


当前回答

这是有可能做到这一切直接在熊猫,是非常适合的独特能力的替代方法。

首先,让我们创建一个字典的字典,将列及其值映射到新的替换值。

transform_dict = {}
for col in df.columns:
    cats = pd.Categorical(df[col]).categories
    d = {}
    for i, cat in enumerate(cats):
        d[cat] = i
    transform_dict[col] = d

transform_dict
{'location': {'New_York': 0, 'San_Diego': 1},
 'owner': {'Brick': 0, 'Champ': 1, 'Ron': 2, 'Veronica': 3},
 'pets': {'cat': 0, 'dog': 1, 'monkey': 2}}

由于这将始终是一个一对一的映射,我们可以反转内部字典以获得新值到原始值的映射。

inverse_transform_dict = {}
for col, d in transform_dict.items():
    inverse_transform_dict[col] = {v:k for k, v in d.items()}

inverse_transform_dict
{'location': {0: 'New_York', 1: 'San_Diego'},
 'owner': {0: 'Brick', 1: 'Champ', 2: 'Ron', 3: 'Veronica'},
 'pets': {0: 'cat', 1: 'dog', 2: 'monkey'}}

现在,我们可以使用replace方法的独特功能来获取一个嵌套的字典列表,并使用外部键作为列,使用内部键作为我们想要替换的值。

df.replace(transform_dict)
   location  owner  pets
0         1      1     0
1         0      2     1
2         0      0     0
3         1      1     2
4         1      3     1
5         0      2     1

通过再次链接replace方法,我们可以很容易地回到原来的方法

df.replace(transform_dict).replace(inverse_transform_dict)
    location     owner    pets
0  San_Diego     Champ     cat
1   New_York       Ron     dog
2   New_York     Brick     cat
3  San_Diego     Champ  monkey
4  San_Diego  Veronica     dog
5   New_York       Ron     dog

其他回答

这是我解决你问题的办法。为了将包含文本的数据帧列转换为编码值,只需使用我的函数text_to_numbers,它返回LE的字典。Key是列LabelEncoder()作为值的列名。

def text_to_numbers(df):
        le_dict = dict()
        for i in df.columns:
            if df[i].dtype not in ["float64", "bool", "int64"]:
                le_dict[i] = preprocessing.LabelEncoder()
                df[i] = le_dict[i].fit_transform(df[i])
    
        return df, le_dict

下面的函数将使保留原始的未编码数据帧成为可能。

 def numbers_to_text(df, le_dict):
        for i in le_dict.keys():
            df[i] = le_dict[i].inverse_transform(df[i])
    
        return df

如果我们有单列来做标签编码和它的逆变换,当python中有多列时,很容易做到这一点

def stringtocategory(dataset):
    '''
    @author puja.sharma
    @see The function label encodes the object type columns and gives label      encoded and inverse tranform of the label encoded data
    @param dataset dataframe on whoes column the label encoding has to be done
    @return label encoded and inverse tranform of the label encoded data.
   ''' 
   data_original = dataset[:]
   data_tranformed = dataset[:]
   for y in dataset.columns:
       #check the dtype of the column object type contains strings or chars
       if (dataset[y].dtype == object):
          print("The string type features are  : " + y)
          le = preprocessing.LabelEncoder()
          le.fit(dataset[y].unique())
          #label encoded data
          data_tranformed[y] = le.transform(dataset[y])
          #inverse label transform  data
          data_original[y] = le.inverse_transform(data_tranformed[y])
   return data_tranformed,data_original

正如larsmans提到的,LabelEncoder()只接受1维数组作为参数。也就是说,可以很容易地滚动自己的标签编码器,对您选择的多个列进行操作,并返回转换后的数据框架。我在这里的代码部分基于Zac Stewart的优秀博客文章。

创建自定义编码器只需要创建一个响应fit()、transform()和fit_transform()方法的类。对你来说,一个好的开始可能是这样的:

import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline

# Create some toy data in a Pandas dataframe
fruit_data = pd.DataFrame({
    'fruit':  ['apple','orange','pear','orange'],
    'color':  ['red','orange','green','green'],
    'weight': [5,6,3,4]
})

class MultiColumnLabelEncoder:
    def __init__(self,columns = None):
        self.columns = columns # array of column names to encode

    def fit(self,X,y=None):
        return self # not relevant here

    def transform(self,X):
        '''
        Transforms columns of X specified in self.columns using
        LabelEncoder(). If no columns specified, transforms all
        columns in X.
        '''
        output = X.copy()
        if self.columns is not None:
            for col in self.columns:
                output[col] = LabelEncoder().fit_transform(output[col])
        else:
            for colname,col in output.iteritems():
                output[colname] = LabelEncoder().fit_transform(col)
        return output

    def fit_transform(self,X,y=None):
        return self.fit(X,y).transform(X)

假设我们想对两个分类属性(fruit和color)进行编码,而不使用数字属性权重。我们可以这样做:

MultiColumnLabelEncoder(columns = ['fruit','color']).fit_transform(fruit_data)

它转换了我们的fruit_data数据集

to

传递给它一个完全由分类变量组成的数据框架,省略columns参数将导致每个列都被编码(我相信这是你最初寻找的):

MultiColumnLabelEncoder().fit_transform(fruit_data.drop('weight',axis=1))

这个转换

to

.

请注意,当它试图编码已经是数值的属性时可能会阻塞(如果您愿意,可以添加一些代码来处理这个问题)。

另一个很好的特性是我们可以在管道中使用这个自定义转换器:

encoding_pipeline = Pipeline([
    ('encoding',MultiColumnLabelEncoder(columns=['fruit','color']))
    # add more pipeline steps as needed
])
encoding_pipeline.fit_transform(fruit_data)

使用Neuraxle

TLDR;你可以在这里使用flatforeach包装类简单地转换你的df,如:

使用这种方法,您的标签编码器将能够在常规的scikit-learn Pipeline中适应和转换。让我们简单地导入:

from sklearn.preprocessing import LabelEncoder
from neuraxle.steps.column_transformer import ColumnTransformer
from neuraxle.steps.loop import FlattenForEach

列的共享编码器相同:

下面是一个共享的LabelEncoder将如何应用于所有数据来编码:

    p = FlattenForEach(LabelEncoder(), then_unflatten=True)

结果:

    p, predicted_output = p.fit_transform(df.values)
    expected_output = np.array([
        [6, 7, 6, 8, 7, 7],
        [1, 3, 0, 1, 5, 3],
        [4, 2, 2, 4, 4, 2]
    ]).transpose()
    assert np.array_equal(predicted_output, expected_output)

每列不同的编码器:

这里是第一个独立的LabelEncoder将如何应用于宠物,第二个将为列的所有者和位置共享。所以准确地说,我们这里有一个不同的和共享的标签编码器的组合:

    p = ColumnTransformer([
        # A different encoder will be used for column 0 with name "pets":
        (0, FlattenForEach(LabelEncoder(), then_unflatten=True)),
        # A shared encoder will be used for column 1 and 2, "owner" and "location":
        ([1, 2], FlattenForEach(LabelEncoder(), then_unflatten=True)),
    ], n_dimension=2)

结果:

    p, predicted_output = p.fit_transform(df.values)
    expected_output = np.array([
        [0, 1, 0, 2, 1, 1],
        [1, 3, 0, 1, 5, 3],
        [4, 2, 2, 4, 4, 2]
    ]).transpose()
    assert np.array_equal(predicted_output, expected_output)

这是脚本

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
col_list = df.select_dtypes(include = "object").columns
for colsn in col_list:
    df[colsn] = le.fit_transform(df[colsn].astype(str))