我使用Python和NumPy,在“转置”方面有一些问题:
import numpy as np
a = np.array([5,4])
print(a)
print(a.T)
调用a.T并不是变换数组。如果a是[[],[]],那么它的转置是正确的,但是我需要[…,…,…]的转置。
我使用Python和NumPy,在“转置”方面有一些问题:
import numpy as np
a = np.array([5,4])
print(a)
print(a.T)
调用a.T并不是变换数组。如果a是[[],[]],那么它的转置是正确的,但是我需要[…,…,…]的转置。
当前回答
使用两个括号对,而不是一个。这将创建一个2D数组,它可以被转置,不像您使用一个括号对创建的1D数组。
import numpy as np
a = np.array([[5, 4]])
a.T
更彻底的例子:
>>> a = [3,6,9]
>>> b = np.array(a)
>>> b.T
array([3, 6, 9]) #Here it didn't transpose because 'a' is 1 dimensional
>>> b = np.array([a])
>>> b.T
array([[3], #Here it did transpose because a is 2 dimensional
[6],
[9]])
使用numpy的shape方法来查看这里发生了什么:
>>> b = np.array([10,20,30])
>>> b.shape
(3,)
>>> b = np.array([[10,20,30]])
>>> b.shape
(1, 3)
其他回答
另一个解决方案…: -)
import numpy as np
a = [1,2,4]
[1, 2, 4]
b = np.array([a]).T
数组([[1], [2], [4]])
使用两个括号对,而不是一个。这将创建一个2D数组,它可以被转置,不像您使用一个括号对创建的1D数组。
import numpy as np
a = np.array([[5, 4]])
a.T
更彻底的例子:
>>> a = [3,6,9]
>>> b = np.array(a)
>>> b.T
array([3, 6, 9]) #Here it didn't transpose because 'a' is 1 dimensional
>>> b = np.array([a])
>>> b.T
array([[3], #Here it did transpose because a is 2 dimensional
[6],
[9]])
使用numpy的shape方法来查看这里发生了什么:
>>> b = np.array([10,20,30])
>>> b.shape
(3,)
>>> b = np.array([[10,20,30]])
>>> b.shape
(1, 3)
—>列/行矩阵:
>>> a=np.array([1,2,4])
>>> a[:, None] # col
array([[1],
[2],
[4]])
>>> a[None, :] # row, or faster `a[None]`
array([[1, 2, 4]])
正如@joe-kington所说,你可以用np替换None。新蜡是为了可读性。
对于1D数组:
a = np.array([1, 2, 3, 4])
a = a.reshape((-1, 1)) # <--- THIS IS IT
print a
array([[1],
[2],
[3],
[4]])
一旦你理解了-1在这里意味着“需要多少行”,我发现这是最易读的“转置”数组的方式。如果你的数组是高维的,简单地使用a.T。
正如上面提到的一些评论,1D数组的转置是1D数组,所以转置1D数组的一种方法是将数组转换为如下的矩阵:
np.transpose(a.reshape(len(a), 1))