我使用Python和NumPy,在“转置”方面有一些问题:

import numpy as np
a = np.array([5,4])
print(a)
print(a.T)

调用a.T并不是变换数组。如果a是[[],[]],那么它的转置是正确的,但是我需要[…,…,…]的转置。


当前回答

numpy中的函数名为column_stack。

>>>a=np.array([5,4])
>>>np.column_stack(a)
array([[5, 4]])

其他回答

正如上面提到的一些评论,1D数组的转置是1D数组,所以转置1D数组的一种方法是将数组转换为如下的矩阵:

np.transpose(a.reshape(len(a), 1))

你可以使用np.expand_dims()函数来调换一个1-D数组(平面数组),就像你的例子中那样:

>>> a = np.expand_dims(np.array([5, 4]), axis=1)
array([[5],
       [4]])

Np.expand_dims()将为所选轴添加一个维度。在本例中,我们使用axis=1,它增加了一个列维度,有效地调换了原始平面数组。

而是使用arr[:,None]创建列向量

numpy中的函数名为column_stack。

>>>a=np.array([5,4])
>>>np.column_stack(a)
array([[5, 4]])

基本上转置函数的作用是交换数组的形状和步长:

>>> a = np.ones((1,2,3))

>>> a.shape
(1, 2, 3)

>>> a.T.shape
(3, 2, 1)

>>> a.strides
(48, 24, 8)

>>> a.T.strides
(8, 24, 48)

在一维numpy数组(rank-1数组)的情况下,形状和跨距是1元素元组,不能交换,这样的一维数组的转置返回它不变。相反,您可以将“行向量”(形状(1,n)的numpy数组)转置为“列向量”(形状(n, 1)的numpy数组)。为了实现这一点,你必须首先将你的1D numpy数组转换为行向量,然后交换形状和跨步(转置它)。下面是一个函数:

from numpy.lib.stride_tricks import as_strided

def transpose(a):
    a = np.atleast_2d(a)
    return as_strided(a, shape=a.shape[::-1], strides=a.strides[::-1])

例子:

>>> a = np.arange(3)
>>> a
array([0, 1, 2])

>>> transpose(a)
array([[0],
       [1],
       [2]])

>>> a = np.arange(1, 7).reshape(2,3)
>>> a     
array([[1, 2, 3],
       [4, 5, 6]])

>>> transpose(a)
array([[1, 4],
       [2, 5],
       [3, 6]])

当然你不需要这样做,因为你有一个一维数组,你可以直接通过a. remodeling((-1, 1))或a[:, None]将它重塑为(n, 1)数组。我只是想演示一下如何对数组进行转置。