我使用Python和NumPy,在“转置”方面有一些问题:

import numpy as np
a = np.array([5,4])
print(a)
print(a.T)

调用a.T并不是变换数组。如果a是[[],[]],那么它的转置是正确的,但是我需要[…,…,…]的转置。


当前回答

你可以把一个现有的向量转换成一个矩阵,方法是用一组额外的方括号把它括起来。

from numpy import *
v=array([5,4]) ## create a numpy vector
array([v]).T ## transpose a vector into a matrix

Numpy还有一个矩阵类(参见array vs. matrix)…

matrix(v).T ## transpose a vector into a matrix

其他回答

而是使用arr[:,None]创建列向量

你只能对2D数组进行转置。您可以使用numpy。矩阵来创建一个2D数组。这迟了三年,但我只是在可能的解决方案中添加了一些:

import numpy as np
m = np.matrix([2, 3])
m.T

有一个方法没有在答案中描述,但在文档中描述了numpy. narray .transpose方法:

对于一维数组,这没有影响,因为转置向量就是相同的向量。要将1-D数组转换为2D列向量,必须添加一个额外维度。np.atleast2d (a)。T实现了这一点,就像a[:, np.newaxis]一样。

你可以这样做:

import numpy as np
a = np.array([5,4])
print(a)
print(np.atleast_2d(a).T)

这(在我看来)比使用新蜡更好。

—>列/行矩阵:

>>> a=np.array([1,2,4])
>>> a[:, None]    # col
array([[1],
       [2],
       [4]])
>>> a[None, :]    # row, or faster `a[None]`
array([[1, 2, 4]])

正如@joe-kington所说,你可以用np替换None。新蜡是为了可读性。

你可以把一个现有的向量转换成一个矩阵,方法是用一组额外的方括号把它括起来。

from numpy import *
v=array([5,4]) ## create a numpy vector
array([v]).T ## transpose a vector into a matrix

Numpy还有一个矩阵类(参见array vs. matrix)…

matrix(v).T ## transpose a vector into a matrix