我使用Python和NumPy,在“转置”方面有一些问题:
import numpy as np
a = np.array([5,4])
print(a)
print(a.T)
调用a.T并不是变换数组。如果a是[[],[]],那么它的转置是正确的,但是我需要[…,…,…]的转置。
我使用Python和NumPy,在“转置”方面有一些问题:
import numpy as np
a = np.array([5,4])
print(a)
print(a.T)
调用a.T并不是变换数组。如果a是[[],[]],那么它的转置是正确的,但是我需要[…,…,…]的转置。
当前回答
你可以把一个现有的向量转换成一个矩阵,方法是用一组额外的方括号把它括起来。
from numpy import *
v=array([5,4]) ## create a numpy vector
array([v]).T ## transpose a vector into a matrix
Numpy还有一个矩阵类(参见array vs. matrix)…
matrix(v).T ## transpose a vector into a matrix
其他回答
它的工作原理和预期的完全一样。一维数组的转置仍然是一维数组!(如果你习惯了matlab,它基本上没有一维数组的概念。Matlab的“1D”数组是2D的。)
如果你想把你的一维向量变成一个二维数组,然后转置它,只需用np对它进行切片。newaxis(或None,它们是一样的,只是newaxis更可读)。
import numpy as np
a = np.array([5,4])[np.newaxis]
print(a)
print(a.T)
一般来说,你不需要担心这个。如果你只是出于习惯,添加额外的维度通常不是你想要的。Numpy会在进行各种计算时自动广播一个1D数组。通常不需要区分行向量和列向量(它们都不是向量)。它们都是2D的!)当你只想要一个向量时。
—>列/行矩阵:
>>> a=np.array([1,2,4])
>>> a[:, None] # col
array([[1],
[2],
[4]])
>>> a[None, :] # row, or faster `a[None]`
array([[1, 2, 4]])
正如@joe-kington所说,你可以用np替换None。新蜡是为了可读性。
另一个解决方案…: -)
import numpy as np
a = [1,2,4]
[1, 2, 4]
b = np.array([a]).T
数组([[1], [2], [4]])
要将1d数组“转置”为2d列,可以使用numpy.vstack:
>>> numpy.vstack(numpy.array([1,2,3]))
array([[1],
[2],
[3]])
它也适用于香草列表:
>>> numpy.vstack([1,2,3])
array([[1],
[2],
[3]])
你可以把一个现有的向量转换成一个矩阵,方法是用一组额外的方括号把它括起来。
from numpy import *
v=array([5,4]) ## create a numpy vector
array([v]).T ## transpose a vector into a matrix
Numpy还有一个矩阵类(参见array vs. matrix)…
matrix(v).T ## transpose a vector into a matrix