似乎应该有一种比以下更简单的方法:
import string
s = "string. With. Punctuation?" # Sample string
out = s.translate(string.maketrans("",""), string.punctuation)
有?
似乎应该有一种比以下更简单的方法:
import string
s = "string. With. Punctuation?" # Sample string
out = s.translate(string.maketrans("",""), string.punctuation)
有?
当前回答
with open('one.txt','r')as myFile:
str1=myFile.read()
print(str1)
punctuation = ['(', ')', '?', ':', ';', ',', '.', '!', '/', '"', "'"]
for i in punctuation:
str1 = str1.replace(i," ")
myList=[]
myList.extend(str1.split(" "))
print (str1)
for i in myList:
print(i,end='\n')
print ("____________")
其他回答
我通常用这样的词:
>>> s = "string. With. Punctuation?" # Sample string
>>> import string
>>> for c in string.punctuation:
... s= s.replace(c,"")
...
>>> s
'string With Punctuation'
我喜欢使用这样的函数:
def scrub(abc):
while abc[-1] is in list(string.punctuation):
abc=abc[:-1]
while abc[0] is in list(string.punctuation):
abc=abc[1:]
return abc
显然,我无法对所选答案进行编辑,所以这里有一个适用于Python3的更新。在进行非平凡转换时,转换方法仍然是最有效的选择。
上面的@Brian为最初的繁重工作做出了贡献。感谢@ddejohn对原始测试的改进建议。
#!/usr/bin/env python3
"""Determination of most efficient way to remove punctuation in Python 3.
Results in Python 3.8.10 on my system using the default arguments:
set : 51.897
regex : 17.901
translate : 2.059
replace : 13.209
"""
import argparse
import re
import string
import timeit
parser = argparse.ArgumentParser()
parser.add_argument("--filename", "-f", default=argparse.__file__)
parser.add_argument("--iterations", "-i", type=int, default=10000)
opts = parser.parse_args()
with open(opts.filename) as fp:
s = fp.read()
exclude = set(string.punctuation)
table = str.maketrans("", "", string.punctuation)
regex = re.compile(f"[{re.escape(string.punctuation)}]")
def test_set(s):
return "".join(ch for ch in s if ch not in exclude)
def test_regex(s): # From Vinko's solution, with fix.
return regex.sub("", s)
def test_translate(s):
return s.translate(table)
def test_replace(s): # From S.Lott's solution
for c in string.punctuation:
s = s.replace(c, "")
return s
opts = dict(globals=globals(), number=opts.iterations)
solutions = "set", "regex", "translate", "replace"
for solution in solutions:
elapsed = timeit.timeit(f"test_{solution}(s)", **opts)
print(f"{solution:<10}: {elapsed:6.3f}")
不一定更简单,但如果你更熟悉re家族的话,就另辟蹊径。
import re, string
s = "string. With. Punctuation?" # Sample string
out = re.sub('[%s]' % re.escape(string.punctuation), '', s)
作为更新,我重写了Python 3中的@Brian示例,并对其进行了更改,以将正则表达式编译步骤移到函数内部。我在这里的想法是对使功能工作所需的每一步进行计时。也许您使用的是分布式计算,无法在工作人员之间共享regex对象,需要在每个工作人员处执行re.compile步骤。此外,我还很好奇地对Python 3的maketrans的两种不同实现进行计时
table = str.maketrans({key: None for key in string.punctuation})
vs
table = str.maketrans('', '', string.punctuation)
另外,我添加了另一种使用集合的方法,在这里我利用交集函数来减少迭代次数。
这是完整的代码:
import re, string, timeit
s = "string. With. Punctuation"
def test_set(s):
exclude = set(string.punctuation)
return ''.join(ch for ch in s if ch not in exclude)
def test_set2(s):
_punctuation = set(string.punctuation)
for punct in set(s).intersection(_punctuation):
s = s.replace(punct, ' ')
return ' '.join(s.split())
def test_re(s): # From Vinko's solution, with fix.
regex = re.compile('[%s]' % re.escape(string.punctuation))
return regex.sub('', s)
def test_trans(s):
table = str.maketrans({key: None for key in string.punctuation})
return s.translate(table)
def test_trans2(s):
table = str.maketrans('', '', string.punctuation)
return(s.translate(table))
def test_repl(s): # From S.Lott's solution
for c in string.punctuation:
s=s.replace(c,"")
return s
print("sets :",timeit.Timer('f(s)', 'from __main__ import s,test_set as f').timeit(1000000))
print("sets2 :",timeit.Timer('f(s)', 'from __main__ import s,test_set2 as f').timeit(1000000))
print("regex :",timeit.Timer('f(s)', 'from __main__ import s,test_re as f').timeit(1000000))
print("translate :",timeit.Timer('f(s)', 'from __main__ import s,test_trans as f').timeit(1000000))
print("translate2 :",timeit.Timer('f(s)', 'from __main__ import s,test_trans2 as f').timeit(1000000))
print("replace :",timeit.Timer('f(s)', 'from __main__ import s,test_repl as f').timeit(1000000))
这是我的结果:
sets : 3.1830138750374317
sets2 : 2.189873124472797
regex : 7.142953420989215
translate : 4.243278483860195
translate2 : 2.427158243022859
replace : 4.579746678471565