我如何添加一个颜色列到下面的数据框架,使颜色='绿色'如果设置== 'Z',和颜色='红色'否则?

    Type       Set
1    A          Z
2    B          Z           
3    B          X
4    C          Y

当前回答

使用.apply()方法的一行代码如下:

df['color'] = df['Set'].apply(lambda set_: 'green' if set_=='Z' else 'red')

之后,df数据帧是这样的:

>>> print(df)
  Type Set  color
0    A   Z  green
1    B   Z  green
2    B   X    red
3    C   Y    red

其他回答

使用.apply()方法的一行代码如下:

df['color'] = df['Set'].apply(lambda set_: 'green' if set_=='Z' else 'red')

之后,df数据帧是这样的:

>>> print(df)
  Type Set  color
0    A   Z  green
1    B   Z  green
2    B   X    red
3    C   Y    red

下面的方法比这里计时的方法慢,但是我们可以基于多个列的内容计算额外的列,并且可以为额外的列计算两个以上的值。

使用“Set”列的简单示例:

def set_color(row):
    if row["Set"] == "Z":
        return "red"
    else:
        return "green"

df = df.assign(color=df.apply(set_color, axis=1))

print(df)
  Set Type  color
0   Z    A    red
1   Z    B    red
2   X    B  green
3   Y    C  green

考虑到更多颜色和更多列的例子:

def set_color(row):
    if row["Set"] == "Z":
        return "red"
    elif row["Type"] == "C":
        return "blue"
    else:
        return "green"

df = df.assign(color=df.apply(set_color, axis=1))

print(df)
  Set Type  color
0   Z    A    red
1   Z    B    red
2   X    B  green
3   Y    C   blue

编辑(21/06/2019):使用plydata

也可以使用plydata来做这类事情(不过,这似乎比使用assign和apply还要慢)。

from plydata import define, if_else

简单的if_else:

df = define(df, color=if_else('Set=="Z"', '"red"', '"green"'))

print(df)
  Set Type  color
0   Z    A    red
1   Z    B    red
2   X    B  green
3   Y    C  green

嵌套if_else:

df = define(df, color=if_else(
    'Set=="Z"',
    '"red"',
    if_else('Type=="C"', '"green"', '"blue"')))

print(df)                            
  Set Type  color
0   Z    A    red
1   Z    B    red
2   X    B   blue
3   Y    C  green

列表推导式是有条件地创建另一列的另一种方法。如果您在列中使用对象dtype,就像您的示例一样,列表推导式通常优于大多数其他方法。

示例列表理解:

df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]

%时间它测试:

import pandas as pd
import numpy as np

df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
%timeit df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
%timeit df['color'] = np.where(df['Set']=='Z', 'green', 'red')
%timeit df['color'] = df.Set.map( lambda x: 'red' if x == 'Z' else 'green')

1000 loops, best of 3: 239 µs per loop
1000 loops, best of 3: 523 µs per loop
1000 loops, best of 3: 263 µs per loop

这是另一种方法,使用字典将新值映射到列表中的键:

def map_values(row, values_dict):
    return values_dict[row]

values_dict = {'A': 1, 'B': 2, 'C': 3, 'D': 4}

df = pd.DataFrame({'INDICATOR': ['A', 'B', 'C', 'D'], 'VALUE': [10, 9, 8, 7]})

df['NEW_VALUE'] = df['INDICATOR'].apply(map_values, args = (values_dict,))

它看起来像什么:

df
Out[2]: 
  INDICATOR  VALUE  NEW_VALUE
0         A     10          1
1         B      9          2
2         C      8          3
3         D      7          4

当你有很多ifelse类型语句要执行时(例如,很多唯一值要替换),这种方法非常强大。

当然你可以这样做:

df['NEW_VALUE'] = df['INDICATOR'].map(values_dict)

但在我的机器上,这种方法比上面的apply方法慢三倍多。

你也可以使用dict.get:

df['NEW_VALUE'] = [values_dict.get(v, None) for v in df['INDICATOR']]

如果你在处理海量数据,记忆方法是最好的:

# First create a dictionary of manually stored values
color_dict = {'Z':'red'}

# Second, build a dictionary of "other" values
color_dict_other = {x:'green' for x in df['Set'].unique() if x not in color_dict.keys()}

# Next, merge the two
color_dict.update(color_dict_other)

# Finally, map it to your column
df['color'] = df['Set'].map(color_dict)

当您有许多重复的值时,这种方法将是最快的。我的一般经验法则是记住data_size > 10**4 & n_distinct < data_size/4

在一种情况下,记忆10,000行,不同值不超过2,500。