我如何添加一个颜色列到下面的数据框架,使颜色='绿色'如果设置== 'Z',和颜色='红色'否则?

    Type       Set
1    A          Z
2    B          Z           
3    B          X
4    C          Y

当前回答

如果你只有两种选择:

df['color'] = np.where(df['Set']=='Z', 'green', 'red')

例如,

import pandas as pd
import numpy as np

df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
df['color'] = np.where(df['Set']=='Z', 'green', 'red')
print(df)

收益率

  Set Type  color
0   Z    A  green
1   Z    B  green
2   X    B    red
3   Y    C    red

如果你有两个以上的条件,那么使用np.select。例如,如果你想要颜色

黄色时(df['设置']= = ' Z ') & (df(“类型”)= =“一”) 否则蓝色当(df['设置']= = ' Z ') & (df(“类型”)= = ' B ') 否则为紫色,当(df['Type'] == 'B') 否则黑,

然后使用

df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
conditions = [
    (df['Set'] == 'Z') & (df['Type'] == 'A'),
    (df['Set'] == 'Z') & (df['Type'] == 'B'),
    (df['Type'] == 'B')]
choices = ['yellow', 'blue', 'purple']
df['color'] = np.select(conditions, choices, default='black')
print(df)

的收益率

  Set Type   color
0   Z    A  yellow
1   Z    B    blue
2   X    B  purple
3   Y    C   black

其他回答

pyjanitor中的case_when函数是pd.Series.mask的包装器,并为多种条件提供了可链接/方便的形式:

对于单一条件:

df.case_when(
    df.col1 == "Z",  # condition
    "green",         # value if True
    "red",           # value if False
    column_name = "color"
    )

  Type Set  color
1    A   Z  green
2    B   Z  green
3    B   X    red
4    C   Y    red

适用于多种情况:

df.case_when(
    df.Set.eq('Z') & df.Type.eq('A'), 'yellow', # condition, result
    df.Set.eq('Z') & df.Type.eq('B'), 'blue',   # condition, result
    df.Type.eq('B'), 'purple',                  # condition, result
    'black',              # default if none of the conditions evaluate to True
    column_name = 'color'  
)
  Type  Set   color
1    A   Z  yellow
2    B   Z    blue
3    B   X  purple
4    C   Y   black

更多的例子可以在这里找到

如果你只有两种选择:

df['color'] = np.where(df['Set']=='Z', 'green', 'red')

例如,

import pandas as pd
import numpy as np

df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
df['color'] = np.where(df['Set']=='Z', 'green', 'red')
print(df)

收益率

  Set Type  color
0   Z    A  green
1   Z    B  green
2   X    B    red
3   Y    C    red

如果你有两个以上的条件,那么使用np.select。例如,如果你想要颜色

黄色时(df['设置']= = ' Z ') & (df(“类型”)= =“一”) 否则蓝色当(df['设置']= = ' Z ') & (df(“类型”)= = ' B ') 否则为紫色,当(df['Type'] == 'B') 否则黑,

然后使用

df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
conditions = [
    (df['Set'] == 'Z') & (df['Type'] == 'A'),
    (df['Set'] == 'Z') & (df['Type'] == 'B'),
    (df['Type'] == 'B')]
choices = ['yellow', 'blue', 'purple']
df['color'] = np.select(conditions, choices, default='black')
print(df)

的收益率

  Set Type   color
0   Z    A  yellow
1   Z    B    blue
2   X    B  purple
3   Y    C   black

您可以简单地使用强大的.loc方法,并根据需要使用一个或多个条件(使用pandas=1.0.5进行测试)。

代码总结:

df=pd.DataFrame(dict(Type='A B B C'.split(), Set='Z Z X Y'.split()))
df['Color'] = "red"
df.loc[(df['Set']=="Z"), 'Color'] = "green"

#practice!
df.loc[(df['Set']=="Z")&(df['Type']=="B")|(df['Type']=="C"), 'Color'] = "purple"

解释:

df=pd.DataFrame(dict(Type='A B B C'.split(), Set='Z Z X Y'.split()))

# df so far: 
  Type Set  
0    A   Z 
1    B   Z 
2    B   X 
3    C   Y

添加“color”列,并将所有值设置为“red”

df['Color'] = "red"

应用你的单一条件:

df.loc[(df['Set']=="Z"), 'Color'] = "green"


# df: 
  Type Set  Color
0    A   Z  green
1    B   Z  green
2    B   X    red
3    C   Y    red

或者多重条件:

df.loc[(df['Set']=="Z")&(df['Type']=="B")|(df['Type']=="C"), 'Color'] = "purple"

你可以在这里阅读Pandas逻辑运算符和条件选择: Pandas中用于布尔索引的逻辑运算符

下面的方法比这里计时的方法慢,但是我们可以基于多个列的内容计算额外的列,并且可以为额外的列计算两个以上的值。

使用“Set”列的简单示例:

def set_color(row):
    if row["Set"] == "Z":
        return "red"
    else:
        return "green"

df = df.assign(color=df.apply(set_color, axis=1))

print(df)
  Set Type  color
0   Z    A    red
1   Z    B    red
2   X    B  green
3   Y    C  green

考虑到更多颜色和更多列的例子:

def set_color(row):
    if row["Set"] == "Z":
        return "red"
    elif row["Type"] == "C":
        return "blue"
    else:
        return "green"

df = df.assign(color=df.apply(set_color, axis=1))

print(df)
  Set Type  color
0   Z    A    red
1   Z    B    red
2   X    B  green
3   Y    C   blue

编辑(21/06/2019):使用plydata

也可以使用plydata来做这类事情(不过,这似乎比使用assign和apply还要慢)。

from plydata import define, if_else

简单的if_else:

df = define(df, color=if_else('Set=="Z"', '"red"', '"green"'))

print(df)
  Set Type  color
0   Z    A    red
1   Z    B    red
2   X    B  green
3   Y    C  green

嵌套if_else:

df = define(df, color=if_else(
    'Set=="Z"',
    '"red"',
    if_else('Type=="C"', '"green"', '"blue"')))

print(df)                            
  Set Type  color
0   Z    A    red
1   Z    B    red
2   X    B   blue
3   Y    C  green

这是另一种方法,使用字典将新值映射到列表中的键:

def map_values(row, values_dict):
    return values_dict[row]

values_dict = {'A': 1, 'B': 2, 'C': 3, 'D': 4}

df = pd.DataFrame({'INDICATOR': ['A', 'B', 'C', 'D'], 'VALUE': [10, 9, 8, 7]})

df['NEW_VALUE'] = df['INDICATOR'].apply(map_values, args = (values_dict,))

它看起来像什么:

df
Out[2]: 
  INDICATOR  VALUE  NEW_VALUE
0         A     10          1
1         B      9          2
2         C      8          3
3         D      7          4

当你有很多ifelse类型语句要执行时(例如,很多唯一值要替换),这种方法非常强大。

当然你可以这样做:

df['NEW_VALUE'] = df['INDICATOR'].map(values_dict)

但在我的机器上,这种方法比上面的apply方法慢三倍多。

你也可以使用dict.get:

df['NEW_VALUE'] = [values_dict.get(v, None) for v in df['INDICATOR']]