我如何创建一个空DataFrame,然后添加行,一个接一个?

我创建了一个空DataFrame:

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))

然后我可以在最后添加一个新行,并填充一个字段:

df = df._set_value(index=len(df), col='qty1', value=10.0)

它一次只适用于一个领域。向df中添加新行有什么更好的方法?


当前回答

这个代码片段使用字典列表来更新数据帧。它补充了ShikharDua和Mikhail_Sam的答案。

import pandas as pd
colour = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]
dict1={}
feat_list=[]
for x in colour:
    for y in fruits:
#         print(x, y)
        dict1 = dict([('x',x),('y',y)])
#         print(f'dict 1 {dict1}')
        feat_list.append(dict1)
#         print(f'feat_list {feat_list}')
feat_df=pd.DataFrame(feat_list)
feat_df.to_csv('feat1.csv')

其他回答

你可以使用pandas.concat()。有关详细信息和示例,请参见合并、连接和连接。

例如:

def append_row(df, row):
    return pd.concat([
                df, 
                pd.DataFrame([row], columns=row.index)]
           ).reset_index(drop=True)

df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
new_row = pd.Series({'lib':'A', 'qty1':1, 'qty2': 2})

df = append_row(df, new_row)

这将负责向空DataFrame添加一个项。问题是对于第一个索引,df.index.max() == nan:

df = pd.DataFrame(columns=['timeMS', 'accelX', 'accelY', 'accelZ', 'gyroX', 'gyroY', 'gyroZ'])

df.loc[0 if math.isnan(df.index.max()) else df.index.max() + 1] = [x for x in range(7)]

从python的角度来说:

res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
res = res.append([{'qty1':10.0}], ignore_index=True)
print(res.head())

   lib  qty1  qty2
0  NaN  10.0   NaN

这不是OP问题的答案,而是一个玩具例子来说明ShikharDua的答案,我觉得非常有用。

虽然这个片段很简单,但在实际数据中,我有1000行和许多列,我希望能够根据不同的列进行分组,然后对多个目标列执行下面的统计。因此,有一种可靠的方法来一次一行地构建数据帧是非常方便的。谢谢你,ShikharDua!

import pandas as pd

BaseData = pd.DataFrame({ 'Customer' : ['Acme','Mega','Acme','Acme','Mega','Acme'],
                          'Territory'  : ['West','East','South','West','East','South'],
                          'Product'  : ['Econ','Luxe','Econ','Std','Std','Econ']})
BaseData

columns = ['Customer','Num Unique Products', 'List Unique Products']

rows_list=[]
for name, group in BaseData.groupby('Customer'):
    RecordtoAdd={} #initialise an empty dict
    RecordtoAdd.update({'Customer' : name}) #
    RecordtoAdd.update({'Num Unique Products' : len(pd.unique(group['Product']))})
    RecordtoAdd.update({'List Unique Products' : pd.unique(group['Product'])})

    rows_list.append(RecordtoAdd)

AnalysedData = pd.DataFrame(rows_list)

print('Base Data : \n',BaseData,'\n\n Analysed Data : \n',AnalysedData)

您还可以建立一个列表的列表,并将其转换为数据框架-

import pandas as pd

columns = ['i','double','square']
rows = []

for i in range(6):
    row = [i, i*2, i*i]
    rows.append(row)

df = pd.DataFrame(rows, columns=columns)

    i   double  square
0   0   0   0
1   1   2   1
2   2   4   4
3   3   6   9
4   4   8   16
5   5   10  25