我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
当前回答
另一种方法(可能不是很有效):
# add a row
def add_row(df, row):
colnames = list(df.columns)
ncol = len(colnames)
assert ncol == len(row), "Length of row must be the same as width of DataFrame: %s" % row
return df.append(pd.DataFrame([row], columns=colnames))
你也可以像这样增强DataFrame类:
import pandas as pd
def add_row(self, row):
self.loc[len(self.index)] = row
pd.DataFrame.add_row = add_row
其他回答
可以使用ignore_index选项将单行追加为字典。
>>> f = pandas.DataFrame(data = {'Animal':['cow','horse'], 'Color':['blue', 'red']})
>>> f
Animal Color
0 cow blue
1 horse red
>>> f.append({'Animal':'mouse', 'Color':'black'}, ignore_index=True)
Animal Color
0 cow blue
1 horse red
2 mouse black
如果你想在末尾添加一行,将其作为列表追加:
valuestoappend = [va1, val2, val3]
res = res.append(pd.Series(valuestoappend, index = ['lib', 'qty1', 'qty2']), ignore_index = True)
mycolumns = ['A', 'B']
df = pd.DataFrame(columns=mycolumns)
rows = [[1,2],[3,4],[5,6]]
for row in rows:
df.loc[len(df)] = row
您可以为此连接两个数据框架。我基本上遇到了这个问题,用字符索引(不是数字)向现有的DataFrame添加新行。
因此,我在一个管道()中输入新行数据,并在一个列表中索引。
new_dict = {put input for new row here}
new_list = [put your index here]
new_df = pd.DataFrame(data=new_dict, index=new_list)
df = pd.concat([existing_df, new_df])
我们经常看到结构df。loc[下标]=…分配给一个数据帧行。Mikhail_Sam发布了包含这个构造以及使用dict并最终创建DataFrame的方法的基准测试。他发现后者是目前为止最快的。
但是如果我们替换df3。loc[i] =…(与预分配的DataFrame)在他的代码df3。值[i] =…时,结果会发生显著变化,因为该方法的执行与使用dict的方法类似。所以我们应该经常使用df。考虑[下标]=…但是请注意,.values有一个从零开始的下标,这可能与DataFrame.index不同。