我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
当前回答
另一种方法(可能不是很有效):
# add a row
def add_row(df, row):
colnames = list(df.columns)
ncol = len(colnames)
assert ncol == len(row), "Length of row must be the same as width of DataFrame: %s" % row
return df.append(pd.DataFrame([row], columns=colnames))
你也可以像这样增强DataFrame类:
import pandas as pd
def add_row(self, row):
self.loc[len(self.index)] = row
pd.DataFrame.add_row = add_row
其他回答
如果你可以提前获得数据帧的所有数据,有一个比追加到数据帧更快的方法:
创建一个字典列表,其中每个字典对应一个输入数据行。 从这个列表创建一个数据帧。
我有一个类似的任务,一行一行地添加到一个数据帧花了30分钟,从字典列表中创建一个数据帧在几秒钟内完成。
rows_list = []
for row in input_rows:
dict1 = {}
# get input row in dictionary format
# key = col_name
dict1.update(blah..)
rows_list.append(dict1)
df = pd.DataFrame(rows_list)
可以使用ignore_index选项将单行追加为字典。
>>> f = pandas.DataFrame(data = {'Animal':['cow','horse'], 'Color':['blue', 'red']})
>>> f
Animal Color
0 cow blue
1 horse red
>>> f.append({'Animal':'mouse', 'Color':'black'}, ignore_index=True)
Animal Color
0 cow blue
1 horse red
2 mouse black
下面是在Pandas数据框架中添加/追加一行的方法:
def add_row(df, row):
df.loc[-1] = row
df.index = df.index + 1
return df.sort_index()
add_row(df, [1,2,3])
它可以用于在空的或填充的Pandas数据框架中插入/追加一行。
这将负责向空DataFrame添加一个项。问题是对于第一个索引,df.index.max() == nan:
df = pd.DataFrame(columns=['timeMS', 'accelX', 'accelY', 'accelZ', 'gyroX', 'gyroY', 'gyroZ'])
df.loc[0 if math.isnan(df.index.max()) else df.index.max() + 1] = [x for x in range(7)]
如果你总是想在最后添加一个新行,使用这个:
df.loc[len(df)] = ['name5', 9, 0]