我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
当前回答
另一种方法(可能不是很有效):
# add a row
def add_row(df, row):
colnames = list(df.columns)
ncol = len(colnames)
assert ncol == len(row), "Length of row must be the same as width of DataFrame: %s" % row
return df.append(pd.DataFrame([row], columns=colnames))
你也可以像这样增强DataFrame类:
import pandas as pd
def add_row(self, row):
self.loc[len(self.index)] = row
pd.DataFrame.add_row = add_row
其他回答
你只需要loc[df]。形状[0]]或loc[len(df)]
# Assuming your df has 4 columns (str, int, str, bool)
df.loc[df.shape[0]] = ['col1Value', 100, 'col3Value', False]
or
df.loc[len(df)] = ['col1Value', 100, 'col3Value', False]
在向dataframe添加大量行的情况下,我对性能感兴趣。所以我尝试了四种最流行的方法,并检查了它们的速度。
性能
使用.append (NPE的答案) 使用。loc (fred的回答) 使用.loc预分配(FooBar的答案) 使用dict并最终创建DataFrame (ShikharDua的回答)
运行时结果(秒):
Approach | 1000 rows | 5000 rows | 10 000 rows |
---|---|---|---|
.append | 0.69 | 3.39 | 6.78 |
.loc without prealloc | 0.74 | 3.90 | 8.35 |
.loc with prealloc | 0.24 | 2.58 | 8.70 |
dict | 0.012 | 0.046 | 0.084 |
所以我自己用了加法法。
代码:
import pandas as pd
import numpy as np
import time
del df1, df2, df3, df4
numOfRows = 1000
# append
startTime = time.perf_counter()
df1 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows-4):
df1 = df1.append( dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']), ignore_index=True)
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df1.shape)
# .loc w/o prealloc
startTime = time.perf_counter()
df2 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows):
df2.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df2.shape)
# .loc with prealloc
df3 = pd.DataFrame(index=np.arange(0, numOfRows), columns=['A', 'B', 'C', 'D', 'E'] )
startTime = time.perf_counter()
for i in range( 1,numOfRows):
df3.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df3.shape)
# dict
startTime = time.perf_counter()
row_list = []
for i in range (0,5):
row_list.append(dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']))
for i in range( 1,numOfRows-4):
dict1 = dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E'])
row_list.append(dict1)
df4 = pd.DataFrame(row_list, columns=['A','B','C','D','E'])
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df4.shape)
附注:我相信我的实现并不完美,也许还有一些优化可以做。
有关有效附加,请参见如何向pandas数据框架添加额外行和使用放大设置。
通过loc/ix在不存在的键索引数据上添加行。例如:
In [1]: se = pd.Series([1,2,3])
In [2]: se
Out[2]:
0 1
1 2
2 3
dtype: int64
In [3]: se[5] = 5.
In [4]: se
Out[4]:
0 1.0
1 2.0
2 3.0
5 5.0
dtype: float64
Or:
In [1]: dfi = pd.DataFrame(np.arange(6).reshape(3,2),
.....: columns=['A','B'])
.....:
In [2]: dfi
Out[2]:
A B
0 0 1
1 2 3
2 4 5
In [3]: dfi.loc[:,'C'] = dfi.loc[:,'A']
In [4]: dfi
Out[4]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
In [5]: dfi.loc[3] = 5
In [6]: dfi
Out[6]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5
您还可以建立一个列表的列表,并将其转换为数据框架-
import pandas as pd
columns = ['i','double','square']
rows = []
for i in range(6):
row = [i, i*2, i*i]
rows.append(row)
df = pd.DataFrame(rows, columns=columns)
给
i double square 0 0 0 0 1 1 2 1 2 2 4 4 3 3 6 9 4 4 8 16 5 5 10 25
我想出了一个简单而美好的方法:
>>> df
A B C
one 1 2 3
>>> df.loc["two"] = [4,5,6]
>>> df
A B C
one 1 2 3
two 4 5 6
请注意评论中提到的性能警告。