我想知道有没有更干净的方法。基本上,我想从一个可变长度的数组中随机选择一个元素。通常,我会这样做:
myArray = ["stuff", "widget", "ruby", "goodies", "java", "emerald", "etc" ]
item = myArray[rand(myarray.length)]
是否有更易于阅读/更简单的内容来取代第二行?还是说这是最好的方法。我想你可以用myarray。shuffle。首先,但我只看到#shuffle几分钟前在SO,我实际上还没有使用它。
以下是我在这里发布的一些答案上进行的一些基准测试,使用样本的速度始终比其他的快。
test_arr = ["stuff", "widget", "ruby", "goodies", "java", "emerald" ]
Benchmark.ips do |x|
x.report("1 - sample") { test_arr.sample }
x.report("2 - shuffle") { test_arr.shuffle.first }
x.report("3 - length") { rand(test_arr.length) }
x.report("4 - rand rand") { test_arr.sample(1 + rand(test_arr.count)) }
x.report("5 - rand el") { test_arr[rand(test_arr.count)]}
x.report("6 - switch") {
case rand(0..test_arr.length)
when 0
test_arr[0]
when 1
test_arr[1]
when 2
test_arr[2]
when 3
test_arr[3]
when 4
test_arr[4]
when 5
test_arr[5]
end
}
x.compare!
测试在MacBook Pro(15英寸,2018年)上运行,2.6 GHz 6核英特尔酷睿i7, 32 GB 2400 MHz DDR4
Warming up --------------------------------------
1 - sample 713.455k i/100ms
2 - shuffle 253.848k i/100ms
3 - length 489.078k i/100ms
4 - rand rand 236.396k i/100ms
5 - rand el 447.244k i/100ms
6 - switch 419.272k i/100ms
Calculating -------------------------------------
1 - sample 7.505M (± 3.2%) i/s - 37.813M in 5.044078s
2 - shuffle 2.661M (± 2.1%) i/s - 13.454M in 5.057659s
3 - length 5.021M (± 1.6%) i/s - 25.432M in 5.066159s
4 - rand rand 2.352M (± 2.4%) i/s - 11.820M in 5.029415s
5 - rand el 4.452M (± 2.2%) i/s - 22.362M in 5.025623s
6 - switch 4.324M (± 1.1%) i/s - 21.802M in 5.043294s
Comparison:
1 - sample: 7504636.7 i/s
3 - length: 5021326.6 i/s - 1.49x (± 0.00) slower
5 - rand el: 4452078.6 i/s - 1.69x (± 0.00) slower
6 - switch: 4323511.6 i/s - 1.74x (± 0.00) slower
2 - shuffle: 2661267.7 i/s - 2.82x (± 0.00) slower
4 - rand rand: 2351630.7 i/s - 3.19x (± 0.00) slower
class String
def black
return "\e[30m#{self}\e[0m"
end
def red
return "\e[31m#{self}\e[0m"
end
def light_green
return "\e[32m#{self}\e[0m"
end
def purple
return "\e[35m#{self}\e[0m"
end
def blue_dark
return "\e[34m#{self}\e[0m"
end
def blue_light
return "\e[36m#{self}\e[0m"
end
def white
return "\e[37m#{self}\e[0m"
end
def randColor
array_color = [
"\e[30m#{self}\e[0m",
"\e[31m#{self}\e[0m",
"\e[32m#{self}\e[0m",
"\e[35m#{self}\e[0m",
"\e[34m#{self}\e[0m",
"\e[36m#{self}\e[0m",
"\e[37m#{self}\e[0m" ]
return array_color[rand(0..array_color.size)]
end
end
puts "black".black
puts "red".red
puts "light_green".light_green
puts "purple".purple
puts "dark blue".blue_dark
puts "light blue".blue_light
puts "white".white
puts "random color".randColor
arr = [1,9,5,2,4,9,5,8,7,9,0,8,2,7,5,8,0,2,9]
arr[rand(arr.count)]
这将从数组中返回一个随机元素。
如果您将使用下面提到的行
arr[1+rand(arr.count)]
然后在某些情况下它将返回0或nil值。
下面提到的一行
rand(number)
总是返回从0到1的值。
如果我们使用
1+rand(number)
然后返回number, arr[number]不包含任何元素。
以下是我在这里发布的一些答案上进行的一些基准测试,使用样本的速度始终比其他的快。
test_arr = ["stuff", "widget", "ruby", "goodies", "java", "emerald" ]
Benchmark.ips do |x|
x.report("1 - sample") { test_arr.sample }
x.report("2 - shuffle") { test_arr.shuffle.first }
x.report("3 - length") { rand(test_arr.length) }
x.report("4 - rand rand") { test_arr.sample(1 + rand(test_arr.count)) }
x.report("5 - rand el") { test_arr[rand(test_arr.count)]}
x.report("6 - switch") {
case rand(0..test_arr.length)
when 0
test_arr[0]
when 1
test_arr[1]
when 2
test_arr[2]
when 3
test_arr[3]
when 4
test_arr[4]
when 5
test_arr[5]
end
}
x.compare!
测试在MacBook Pro(15英寸,2018年)上运行,2.6 GHz 6核英特尔酷睿i7, 32 GB 2400 MHz DDR4
Warming up --------------------------------------
1 - sample 713.455k i/100ms
2 - shuffle 253.848k i/100ms
3 - length 489.078k i/100ms
4 - rand rand 236.396k i/100ms
5 - rand el 447.244k i/100ms
6 - switch 419.272k i/100ms
Calculating -------------------------------------
1 - sample 7.505M (± 3.2%) i/s - 37.813M in 5.044078s
2 - shuffle 2.661M (± 2.1%) i/s - 13.454M in 5.057659s
3 - length 5.021M (± 1.6%) i/s - 25.432M in 5.066159s
4 - rand rand 2.352M (± 2.4%) i/s - 11.820M in 5.029415s
5 - rand el 4.452M (± 2.2%) i/s - 22.362M in 5.025623s
6 - switch 4.324M (± 1.1%) i/s - 21.802M in 5.043294s
Comparison:
1 - sample: 7504636.7 i/s
3 - length: 5021326.6 i/s - 1.49x (± 0.00) slower
5 - rand el: 4452078.6 i/s - 1.69x (± 0.00) slower
6 - switch: 4323511.6 i/s - 1.74x (± 0.00) slower
2 - shuffle: 2661267.7 i/s - 2.82x (± 0.00) slower
4 - rand rand: 2351630.7 i/s - 3.19x (± 0.00) slower