我已经用CNN训练了一个二元分类模型,下面是我的代码

model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
                        border_mode='valid',
                        input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (16, 16, 32)
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (8, 8, 64) = (2048)
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2))  # define a binary classification problem
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])
model.fit(x_train, y_train,
          batch_size=batch_size,
          nb_epoch=nb_epoch,
          verbose=1,
          validation_data=(x_test, y_test))

这里,我想要得到每一层的输出就像TensorFlow一样,我该怎么做呢?


当前回答

这个答案基于:https://stackoverflow.com/a/59557567/2585501

打印单个图层的输出:

from tensorflow.keras import backend as K
layerIndex = 1
func = K.function([model.get_layer(index=0).input], model.get_layer(index=layerIndex).output)
layerOutput = func([input_data])  # input_data is a numpy array
print(layerOutput)

打印每一层的输出:

from tensorflow.keras import backend as K
for layerIndex, layer in enumerate(model.layers):
    func = K.function([model.get_layer(index=0).input], layer.output)
    layerOutput = func([input_data])  # input_data is a numpy array
    print(layerOutput)

其他回答

你可以通过使用:model.layers[index].output轻松获得任何层的输出

对于所有层使用这个:

from keras import backend as K

inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers]          # all layer outputs
functors = [K.function([inp, K.learning_phase()], [out]) for out in outputs]    # evaluation functions

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test, 1.]) for func in functors]
print layer_outs

注意:要模拟Dropout,请使用learning_phase作为1。在layer_outs中,否则使用0。

编辑:(根据评论)

K.function创建了ano/tensorflow张量函数,之后用于从给定输入的符号图中获得输出。

现在需要K.learning_phase()作为输入,因为许多Keras层(如Dropout/Batchnomalization)依赖它来改变训练和测试期间的行为。

所以如果你在你的代码中删除dropout层,你可以简单地使用:

from keras import backend as K

inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers]          # all layer outputs
functors = [K.function([inp], [out]) for out in outputs]    # evaluation functions

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test]) for func in functors]
print layer_outs

编辑2:更优化

我刚刚意识到,前面的答案并没有优化,因为对于每个函数的计算,数据将被CPU->GPU内存传输,而且张量计算需要对较低的层进行n-over。

相反,这是一种更好的方式,因为你不需要多个函数,而是一个函数给你所有输出的列表:

from keras import backend as K

inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers]          # all layer outputs
functor = K.function([inp, K.learning_phase()], outputs )   # evaluation function

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = functor([test, 1.])
print layer_outs

通常,输出大小可以计算为

[(W−K + 2P / S] + 1

在哪里

W is the input volume - in your case you have not given us this
K is the Kernel size - in your case 2 == "filter" 
P is the padding - in your case 2
S is the stride - in your case 3

另一个更漂亮的说法是:

以下对我来说很简单:

model.layers[idx].output

上面是一个张量对象,所以你可以使用应用于张量对象的操作来修改它。

例如,要获取形状model.layers[idx].output.get_shape()

Idx是该层的索引,你可以从model.summary()中找到它

根据这个线程的所有好答案,我写了一个库来获取每一层的输出。它抽象了所有的复杂性,并被设计成尽可能友好的用户:

https://github.com/philipperemy/keract

它可以处理几乎所有的边界情况。

希望能有所帮助!

希望将此作为评论(但没有足够高的代表)添加到@indraforyou的回答中,以纠正@mathtick的评论中提到的问题。为了避免InvalidArgumentError: input_X:Y被提供和获取。异常,只需替换行输出=[层。模型中层的输出。输出= [layer.]模型中层的输出。层][1:]。

调整indraforyou的最小工作示例:

from keras import backend as K 
inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers][1:]        # all layer outputs except first (input) layer
functor = K.function([inp, K.learning_phase()], outputs )   # evaluation function

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = functor([test, 1.])
print layer_outs

附注:我尝试输出=[层。模型中层的输出。Layers[1:]]不起作用。