我已经用CNN训练了一个二元分类模型,下面是我的代码

model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
                        border_mode='valid',
                        input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (16, 16, 32)
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (8, 8, 64) = (2048)
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2))  # define a binary classification problem
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])
model.fit(x_train, y_train,
          batch_size=batch_size,
          nb_epoch=nb_epoch,
          verbose=1,
          validation_data=(x_test, y_test))

这里,我想要得到每一层的输出就像TensorFlow一样,我该怎么做呢?


当前回答

来自:https://github.com/philipperemy/keras-visualize-activations/blob/master/read_activations.py

import keras.backend as K

def get_activations(model, model_inputs, print_shape_only=False, layer_name=None):
    print('----- activations -----')
    activations = []
    inp = model.input

    model_multi_inputs_cond = True
    if not isinstance(inp, list):
        # only one input! let's wrap it in a list.
        inp = [inp]
        model_multi_inputs_cond = False

    outputs = [layer.output for layer in model.layers if
               layer.name == layer_name or layer_name is None]  # all layer outputs

    funcs = [K.function(inp + [K.learning_phase()], [out]) for out in outputs]  # evaluation functions

    if model_multi_inputs_cond:
        list_inputs = []
        list_inputs.extend(model_inputs)
        list_inputs.append(0.)
    else:
        list_inputs = [model_inputs, 0.]

    # Learning phase. 0 = Test mode (no dropout or batch normalization)
    # layer_outputs = [func([model_inputs, 0.])[0] for func in funcs]
    layer_outputs = [func(list_inputs)[0] for func in funcs]
    for layer_activations in layer_outputs:
        activations.append(layer_activations)
        if print_shape_only:
            print(layer_activations.shape)
        else:
            print(layer_activations)
    return activations

其他回答

你可以通过使用:model.layers[index].output轻松获得任何层的输出

对于所有层使用这个:

from keras import backend as K

inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers]          # all layer outputs
functors = [K.function([inp, K.learning_phase()], [out]) for out in outputs]    # evaluation functions

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test, 1.]) for func in functors]
print layer_outs

注意:要模拟Dropout,请使用learning_phase作为1。在layer_outs中,否则使用0。

编辑:(根据评论)

K.function创建了ano/tensorflow张量函数,之后用于从给定输入的符号图中获得输出。

现在需要K.learning_phase()作为输入,因为许多Keras层(如Dropout/Batchnomalization)依赖它来改变训练和测试期间的行为。

所以如果你在你的代码中删除dropout层,你可以简单地使用:

from keras import backend as K

inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers]          # all layer outputs
functors = [K.function([inp], [out]) for out in outputs]    # evaluation functions

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test]) for func in functors]
print layer_outs

编辑2:更优化

我刚刚意识到,前面的答案并没有优化,因为对于每个函数的计算,数据将被CPU->GPU内存传输,而且张量计算需要对较低的层进行n-over。

相反,这是一种更好的方式,因为你不需要多个函数,而是一个函数给你所有输出的列表:

from keras import backend as K

inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers]          # all layer outputs
functor = K.function([inp, K.learning_phase()], outputs )   # evaluation function

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = functor([test, 1.])
print layer_outs

通常,输出大小可以计算为

[(W−K + 2P / S] + 1

在哪里

W is the input volume - in your case you have not given us this
K is the Kernel size - in your case 2 == "filter" 
P is the padding - in your case 2
S is the stride - in your case 3

另一个更漂亮的说法是:

我为自己写了这个函数(在Jupyter),它的灵感来自indraforyou的答案。它会自动绘制所有的层输出。您的图像必须具有(x, y, 1)形状,其中1代表1个通道。您只需调用plot_layer_outputs(…)来绘图。

%matplotlib inline
import matplotlib.pyplot as plt
from keras import backend as K

def get_layer_outputs():
    test_image = YOUR IMAGE GOES HERE!!!
    outputs    = [layer.output for layer in model.layers]          # all layer outputs
    comp_graph = [K.function([model.input]+ [K.learning_phase()], [output]) for output in outputs]  # evaluation functions

    # Testing
    layer_outputs_list = [op([test_image, 1.]) for op in comp_graph]
    layer_outputs = []

    for layer_output in layer_outputs_list:
        print(layer_output[0][0].shape, end='\n-------------------\n')
        layer_outputs.append(layer_output[0][0])

    return layer_outputs

def plot_layer_outputs(layer_number):    
    layer_outputs = get_layer_outputs()

    x_max = layer_outputs[layer_number].shape[0]
    y_max = layer_outputs[layer_number].shape[1]
    n     = layer_outputs[layer_number].shape[2]

    L = []
    for i in range(n):
        L.append(np.zeros((x_max, y_max)))

    for i in range(n):
        for x in range(x_max):
            for y in range(y_max):
                L[i][x][y] = layer_outputs[layer_number][x][y][i]


    for img in L:
        plt.figure()
        plt.imshow(img, interpolation='nearest')

好吧,其他答案都很完整,但有一个非常基本的方法来“看到”,而不是“得到”形状。

只需执行一个model.summary()。它将打印所有图层及其输出形状。“None”值将指示可变维度,第一个维度将是批处理大小。

来自:https://github.com/philipperemy/keras-visualize-activations/blob/master/read_activations.py

import keras.backend as K

def get_activations(model, model_inputs, print_shape_only=False, layer_name=None):
    print('----- activations -----')
    activations = []
    inp = model.input

    model_multi_inputs_cond = True
    if not isinstance(inp, list):
        # only one input! let's wrap it in a list.
        inp = [inp]
        model_multi_inputs_cond = False

    outputs = [layer.output for layer in model.layers if
               layer.name == layer_name or layer_name is None]  # all layer outputs

    funcs = [K.function(inp + [K.learning_phase()], [out]) for out in outputs]  # evaluation functions

    if model_multi_inputs_cond:
        list_inputs = []
        list_inputs.extend(model_inputs)
        list_inputs.append(0.)
    else:
        list_inputs = [model_inputs, 0.]

    # Learning phase. 0 = Test mode (no dropout or batch normalization)
    # layer_outputs = [func([model_inputs, 0.])[0] for func in funcs]
    layer_outputs = [func(list_inputs)[0] for func in funcs]
    for layer_activations in layer_outputs:
        activations.append(layer_activations)
        if print_shape_only:
            print(layer_activations.shape)
        else:
            print(layer_activations)
    return activations