如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)


当前回答

稍微改进一下e。james的回答:

double dx = abs(circle.x - rect.x) - rect.w / 2,
       dy = abs(circle.y - rect.y) - rect.h / 2;

if (dx > circle.r || dy > circle.r) { return false; }
if (dx <= 0 || dy <= 0) { return true; }

return (dx * dx + dy * dy <= circle.r * circle.r);

这就减去了一次,而不是最多减去三次。

其他回答

这里有另一个解决方案,实现起来非常简单(也非常快)。它将捕获所有的交点,包括当球体完全进入矩形时。

// clamp(value, min, max) - limits value to the range min..max

// Find the closest point to the circle within the rectangle
float closestX = clamp(circle.X, rectangle.Left, rectangle.Right);
float closestY = clamp(circle.Y, rectangle.Top, rectangle.Bottom);

// Calculate the distance between the circle's center and this closest point
float distanceX = circle.X - closestX;
float distanceY = circle.Y - closestY;

// If the distance is less than the circle's radius, an intersection occurs
float distanceSquared = (distanceX * distanceX) + (distanceY * distanceY);
return distanceSquared < (circle.Radius * circle.Radius);

任何像样的数学库都可以将其缩短为3或4行。

下面是我的C代码,用于解决球体和非轴对齐的盒子之间的碰撞。它依赖于我自己的几个库例程,但它可能对某些人有用。我在游戏中使用了它,效果非常好。

float physicsProcessCollisionBetweenSelfAndActorRect(SPhysics *self, SPhysics *actor)
{
    float diff = 99999;

    SVector relative_position_of_circle = getDifference2DBetweenVectors(&self->worldPosition, &actor->worldPosition);
    rotateVector2DBy(&relative_position_of_circle, -actor->axis.angleZ); // This aligns the coord system so the rect becomes an AABB

    float x_clamped_within_rectangle = relative_position_of_circle.x;
    float y_clamped_within_rectangle = relative_position_of_circle.y;
    LIMIT(x_clamped_within_rectangle, actor->physicsRect.l, actor->physicsRect.r);
    LIMIT(y_clamped_within_rectangle, actor->physicsRect.b, actor->physicsRect.t);

    // Calculate the distance between the circle's center and this closest point
    float distance_to_nearest_edge_x = relative_position_of_circle.x - x_clamped_within_rectangle;
    float distance_to_nearest_edge_y = relative_position_of_circle.y - y_clamped_within_rectangle;

    // If the distance is less than the circle's radius, an intersection occurs
    float distance_sq_x = SQUARE(distance_to_nearest_edge_x);
    float distance_sq_y = SQUARE(distance_to_nearest_edge_y);
    float radius_sq = SQUARE(self->physicsRadius);
    if(distance_sq_x + distance_sq_y < radius_sq)   
    {
        float half_rect_w = (actor->physicsRect.r - actor->physicsRect.l) * 0.5f;
        float half_rect_h = (actor->physicsRect.t - actor->physicsRect.b) * 0.5f;

        CREATE_VECTOR(push_vector);         

        // If we're at one of the corners of this object, treat this as a circular/circular collision
        if(fabs(relative_position_of_circle.x) > half_rect_w && fabs(relative_position_of_circle.y) > half_rect_h)
        {
            SVector edges;
            if(relative_position_of_circle.x > 0) edges.x = half_rect_w; else edges.x = -half_rect_w;
            if(relative_position_of_circle.y > 0) edges.y = half_rect_h; else edges.y = -half_rect_h;   

            push_vector = relative_position_of_circle;
            moveVectorByInverseVector2D(&push_vector, &edges);

            // We now have the vector from the corner of the rect to the point.
            float delta_length = getVector2DMagnitude(&push_vector);
            float diff = self->physicsRadius - delta_length; // Find out how far away we are from our ideal distance

            // Normalise the vector
            push_vector.x /= delta_length;
            push_vector.y /= delta_length;
            scaleVector2DBy(&push_vector, diff); // Now multiply it by the difference
            push_vector.z = 0;
        }
        else // Nope - just bouncing against one of the edges
        {
            if(relative_position_of_circle.x > 0) // Ball is to the right
                push_vector.x = (half_rect_w + self->physicsRadius) - relative_position_of_circle.x;
            else
                push_vector.x = -((half_rect_w + self->physicsRadius) + relative_position_of_circle.x);

            if(relative_position_of_circle.y > 0) // Ball is above
                push_vector.y = (half_rect_h + self->physicsRadius) - relative_position_of_circle.y;
            else
                push_vector.y = -((half_rect_h + self->physicsRadius) + relative_position_of_circle.y);

            if(fabs(push_vector.x) < fabs(push_vector.y))
                push_vector.y = 0;
            else
                push_vector.x = 0;
        }

        diff = 0; // Cheat, since we don't do anything with the value anyway
        rotateVector2DBy(&push_vector, actor->axis.angleZ);
        SVector *from = &self->worldPosition;       
        moveVectorBy2D(from, push_vector.x, push_vector.y);
    }   
    return diff;
}

我为处理形状创建了类 希望你喜欢

public class Geomethry {
  public static boolean intersectionCircleAndRectangle(int circleX, int circleY, int circleR, int rectangleX, int rectangleY, int rectangleWidth, int rectangleHeight){
    boolean result = false;

    float rectHalfWidth = rectangleWidth/2.0f;
    float rectHalfHeight = rectangleHeight/2.0f;

    float rectCenterX = rectangleX + rectHalfWidth;
    float rectCenterY = rectangleY + rectHalfHeight;

    float deltax = Math.abs(rectCenterX - circleX);
    float deltay = Math.abs(rectCenterY - circleY);

    float lengthHypotenuseSqure = deltax*deltax + deltay*deltay;

    do{
        // check that distance between the centerse is more than the distance between the circumcircle of rectangle and circle
        if(lengthHypotenuseSqure > ((rectHalfWidth+circleR)*(rectHalfWidth+circleR) + (rectHalfHeight+circleR)*(rectHalfHeight+circleR))){
            //System.out.println("distance between the centerse is more than the distance between the circumcircle of rectangle and circle");
            break;
        }

        // check that distance between the centerse is less than the distance between the inscribed circle
        float rectMinHalfSide = Math.min(rectHalfWidth, rectHalfHeight);
        if(lengthHypotenuseSqure < ((rectMinHalfSide+circleR)*(rectMinHalfSide+circleR))){
            //System.out.println("distance between the centerse is less than the distance between the inscribed circle");
            result=true;
            break;
        }

        // check that the squares relate to angles
        if((deltax > (rectHalfWidth+circleR)*0.9) && (deltay > (rectHalfHeight+circleR)*0.9)){
            //System.out.println("squares relate to angles");
            result=true;
        }
    }while(false);

    return result;
}

public static boolean intersectionRectangleAndRectangle(int rectangleX, int rectangleY, int rectangleWidth, int rectangleHeight, int rectangleX2, int rectangleY2, int rectangleWidth2, int rectangleHeight2){
    boolean result = false;

    float rectHalfWidth = rectangleWidth/2.0f;
    float rectHalfHeight = rectangleHeight/2.0f;
    float rectHalfWidth2 = rectangleWidth2/2.0f;
    float rectHalfHeight2 = rectangleHeight2/2.0f;

    float deltax = Math.abs((rectangleX + rectHalfWidth) - (rectangleX2 + rectHalfWidth2));
    float deltay = Math.abs((rectangleY + rectHalfHeight) - (rectangleY2 + rectHalfHeight2));

    float lengthHypotenuseSqure = deltax*deltax + deltay*deltay;

    do{
        // check that distance between the centerse is more than the distance between the circumcircle
        if(lengthHypotenuseSqure > ((rectHalfWidth+rectHalfWidth2)*(rectHalfWidth+rectHalfWidth2) + (rectHalfHeight+rectHalfHeight2)*(rectHalfHeight+rectHalfHeight2))){
            //System.out.println("distance between the centerse is more than the distance between the circumcircle");
            break;
        }

        // check that distance between the centerse is less than the distance between the inscribed circle
        float rectMinHalfSide = Math.min(rectHalfWidth, rectHalfHeight);
        float rectMinHalfSide2 = Math.min(rectHalfWidth2, rectHalfHeight2);
        if(lengthHypotenuseSqure < ((rectMinHalfSide+rectMinHalfSide2)*(rectMinHalfSide+rectMinHalfSide2))){
            //System.out.println("distance between the centerse is less than the distance between the inscribed circle");
            result=true;
            break;
        }

        // check that the squares relate to angles
        if((deltax > (rectHalfWidth+rectHalfWidth2)*0.9) && (deltay > (rectHalfHeight+rectHalfHeight2)*0.9)){
            //System.out.println("squares relate to angles");
            result=true;
        }
    }while(false);

    return result;
  } 
}

首先检查矩形和与圆相切的正方形是否重叠(简单)。如果它们不重叠,就不会碰撞。 检查圆的中心是否在矩形内(简单)。如果它在里面,它们就会碰撞。 计算矩形边到圆中心的最小平方距离(略硬)。如果小于半径的平方,它们就会碰撞,否则不会。

它是有效的,因为:

首先,它用一个便宜的算法检查最常见的场景,当它确定它们没有碰撞时,它就结束了。 然后它用一个廉价的算法检查下一个最常见的场景(不要计算平方根,使用平方值),当它确定它们碰撞时,它就结束了。 然后它执行更昂贵的算法来检查与矩形边框的碰撞。

这里有一个快速的单行测试:

if (length(max(abs(center - rect_mid) - rect_halves, 0)) <= radius ) {
  // They intersect.
}

这是轴对齐的情况,其中rect_二分之一是一个正向量,从矩形的中间指向一个角。length()中的表达式是一个从矩形中心到最近点的增量向量。这适用于任何维度。