如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)


当前回答

稍微改进一下e。james的回答:

double dx = abs(circle.x - rect.x) - rect.w / 2,
       dy = abs(circle.y - rect.y) - rect.h / 2;

if (dx > circle.r || dy > circle.r) { return false; }
if (dx <= 0 || dy <= 0) { return true; }

return (dx * dx + dy * dy <= circle.r * circle.r);

这就减去了一次,而不是最多减去三次。

其他回答

首先检查矩形和与圆相切的正方形是否重叠(简单)。如果它们不重叠,就不会碰撞。 检查圆的中心是否在矩形内(简单)。如果它在里面,它们就会碰撞。 计算矩形边到圆中心的最小平方距离(略硬)。如果小于半径的平方,它们就会碰撞,否则不会。

它是有效的,因为:

首先,它用一个便宜的算法检查最常见的场景,当它确定它们没有碰撞时,它就结束了。 然后它用一个廉价的算法检查下一个最常见的场景(不要计算平方根,使用平方值),当它确定它们碰撞时,它就结束了。 然后它执行更昂贵的算法来检查与矩形边框的碰撞。

我有一个方法可以避免昂贵的毕达哥拉斯,如果没有必要的话。当矩形和圆的包围框不相交时。

对非欧几里得也适用

class Circle {
 // create the bounding box of the circle only once
 BBox bbox;

 public boolean intersect(BBox b) {
    // test top intersect
    if (lat > b.maxLat) {
        if (lon < b.minLon)
            return normDist(b.maxLat, b.minLon) <= normedDist;
        if (lon > b.maxLon)
            return normDist(b.maxLat, b.maxLon) <= normedDist;
        return b.maxLat - bbox.minLat > 0;
    }

    // test bottom intersect
    if (lat < b.minLat) {
        if (lon < b.minLon)
            return normDist(b.minLat, b.minLon) <= normedDist;
        if (lon > b.maxLon)
            return normDist(b.minLat, b.maxLon) <= normedDist;
        return bbox.maxLat - b.minLat > 0;
    }

    // test middle intersect
    if (lon < b.minLon)
        return bbox.maxLon - b.minLon > 0;
    if (lon > b.maxLon)
        return b.maxLon - bbox.minLon > 0;
    return true;
  }
}

minLat、maxLat可替换为minY、maxY, minLon、maxLon也可替换为minX、maxX normDist方法比全距离计算快一点。例如,在欧几里得空间中没有平方根(或者没有很多其他的haversine): dat =(lat-circleY);dLon = (lon-circleX);赋范= dLat * dLat + dLon * dLon。当然,如果你使用normDist方法你需要创建一个normedDist = dist*dist;对于圆来说

查看我的GraphHopper项目的完整的BBox和Circle代码。

如果你对一个更图形化的解决方案感兴趣,甚至在(平面上)旋转的矩形..

演示:https://jsfiddle.net/exodus4d/94mxLvqh/2691/

这个想法是:

将场景转换为原点[0,0] 如果矩形不在平面上,则旋转中心应在 (0,0) 将场景旋转回平面 计算交点

const hasIntersection = ({x: cx, y: cy, r: cr}, {x, y, width, height}) => { const distX = Math.abs(cx - x - width / 2); const distY = Math.abs(cy - y - height / 2); if (distX > (width / 2 + cr)) { return false; } if (distY > (height / 2 + cr)) { return false; } if (distX <= (width / 2)) { return true; } if (distY <= (height / 2)) { return true; } const Δx = distX - width / 2; const Δy = distY - height / 2; return Δx * Δx + Δy * Δy <= cr * cr; }; const rect = new DOMRect(50, 20, 100, 50); const circ1 = new DOMPoint(160, 80); circ1.r = 20; const circ2 = new DOMPoint(80, 95); circ2.r = 20; const canvas = document.getElementById('canvas'); const ctx = canvas.getContext('2d'); ctx.strokeRect(rect.x, rect.y, rect.width, rect.height); ctx.beginPath(); ctx.strokeStyle = hasIntersection(circ1, rect) ? 'red' : 'green'; ctx.arc(circ1.x, circ1.y, circ1.r, 0, 2 * Math.PI); ctx.stroke(); ctx.beginPath(); ctx.strokeStyle = hasIntersection(circ2, rect) ? 'red' : 'green'; ctx.arc(circ2.x, circ2.y, circ2.r, 0, 2 * Math.PI); ctx.stroke(); <canvas id="canvas"></canvas>

提示:而不是旋转矩形(4点)。你可以向相反的方向旋转圆(1点)。

为我工作(只工作时,矩形的角度是180)

function intersects(circle, rect) {
  let left = rect.x + rect.width > circle.x - circle.radius;
  let right = rect.x < circle.x + circle.radius;
  let top = rect.y < circle.y + circle.radius;
  let bottom = rect.y + rect.height > circle.y - circle.radius;
  return left && right && bottom && top;
}
def colision(rect, circle):
dx = rect.x - circle.x
dy = rect.y - circle.y
distance = (dy**2 + dx**2)**0.5
angle_to = (rect.angle + math.atan2(dx, dy)/3.1415*180.0) % 360
if((angle_to>135 and angle_to<225) or (angle_to>0 and angle_to<45) or (angle_to>315 and angle_to<360)):
    if distance <= circle.rad/2.+((rect.height/2.0)*(1.+0.5*abs(math.sin(angle_to*math.pi/180.)))):
        return True
else:
    if distance <= circle.rad/2.+((rect.width/2.0)*(1.+0.5*abs(math.cos(angle_to*math.pi/180.)))):
        return True
return False