如何分辨圆和矩形在二维欧几里得空间中是否相交?(即经典二维几何)
当前回答
下面是修改后的代码100%工作:
public static bool IsIntersected(PointF circle, float radius, RectangleF rectangle)
{
var rectangleCenter = new PointF((rectangle.X + rectangle.Width / 2),
(rectangle.Y + rectangle.Height / 2));
var w = rectangle.Width / 2;
var h = rectangle.Height / 2;
var dx = Math.Abs(circle.X - rectangleCenter.X);
var dy = Math.Abs(circle.Y - rectangleCenter.Y);
if (dx > (radius + w) || dy > (radius + h)) return false;
var circleDistance = new PointF
{
X = Math.Abs(circle.X - rectangle.X - w),
Y = Math.Abs(circle.Y - rectangle.Y - h)
};
if (circleDistance.X <= (w))
{
return true;
}
if (circleDistance.Y <= (h))
{
return true;
}
var cornerDistanceSq = Math.Pow(circleDistance.X - w, 2) +
Math.Pow(circleDistance.Y - h, 2);
return (cornerDistanceSq <= (Math.Pow(radius, 2)));
}
Bassam Alugili
其他回答
有一种非常简单的方法来做到这一点,你必须在x和y上夹住一个点,但在正方形内部,当圆心在一个垂直轴上的两个正方形边界点之间时,你需要将这些坐标夹到平行轴上,只是要确保夹住的坐标不超过正方形的限制。 然后只需得到圆心与夹紧坐标之间的距离,并检查距离是否小于圆的半径。
以下是我是如何做到的(前4个点是方坐标,其余是圆点):
bool DoesCircleImpactBox(float x, float y, float x1, float y1, float xc, float yc, float radius){
float ClampedX=0;
float ClampedY=0;
if(xc>=x and xc<=x1){
ClampedX=xc;
}
if(yc>=y and yc<=y1){
ClampedY=yc;
}
radius = radius+1;
if(xc<x) ClampedX=x;
if(xc>x1) ClampedX=x1-1;
if(yc<y) ClampedY=y;
if(yc>y1) ClampedY=y1-1;
float XDif=ClampedX-xc;
XDif=XDif*XDif;
float YDif=ClampedY-yc;
YDif=YDif*YDif;
if(XDif+YDif<=radius*radius) return true;
return false;
}
我想出的最简单的解决办法非常直接。
它的工作原理是在矩形中找到离圆最近的点,然后比较距离。
您可以通过一些操作来完成所有这些操作,甚至可以避免使用平方根函数。
public boolean intersects(float cx, float cy, float radius, float left, float top, float right, float bottom)
{
float closestX = (cx < left ? left : (cx > right ? right : cx));
float closestY = (cy < top ? top : (cy > bottom ? bottom : cy));
float dx = closestX - cx;
float dy = closestY - cy;
return ( dx * dx + dy * dy ) <= radius * radius;
}
就是这样!上面的解决方案假设原点在世界的左上方,x轴指向下方。
如果你想要一个解决移动的圆形和矩形之间碰撞的解决方案,这要复杂得多,并且包含在我的另一个答案中。
假设你有矩形的四条边,检查从这些边到圆心的距离,如果小于半径,那么这些形状是相交的。
if sqrt((rectangleRight.x - circleCenter.x)^2 +
(rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect
if sqrt((rectangleRight.x - circleCenter.x)^2 +
(rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect
if sqrt((rectangleLeft.x - circleCenter.x)^2 +
(rectangleTop.y - circleCenter.y)^2) < radius
// then they intersect
if sqrt((rectangleLeft.x - circleCenter.x)^2 +
(rectangleBottom.y - circleCenter.y)^2) < radius
// then they intersect
圆与矩形相交只有两种情况:
圆的中心在矩形的内部,或者 矩形的一条边在圆上有一个点。
注意,这并不要求矩形与轴平行。
(一种方法是:如果没有一条边在圆中有点(如果所有的边都完全“在”圆外),那么圆仍然可以与多边形相交的唯一方法是它完全位于多边形内部。)
有了这样的见解,就可以像下面这样工作,其中圆的中心是P,半径是R,矩形的顶点是A, B, C, D(不完整的代码):
def intersect(Circle(P, R), Rectangle(A, B, C, D)):
S = Circle(P, R)
return (pointInRectangle(P, Rectangle(A, B, C, D)) or
intersectCircle(S, (A, B)) or
intersectCircle(S, (B, C)) or
intersectCircle(S, (C, D)) or
intersectCircle(S, (D, A)))
如果你在写任何几何,你的库中可能已经有了上面的函数。否则,pointInRectangle()可以用几种方式实现;任何一般的多边形点方法都可以工作,但对于矩形,你可以检查这是否有效:
0 ≤ AP·AB ≤ AB·AB and 0 ≤ AP·AD ≤ AD·AD
intersectCircle()也很容易实现:一种方法是检查从P到直线的垂线的脚是否足够近并且在端点之间,否则检查端点。
最酷的是,同样的想法不仅适用于矩形,而且适用于一个圆与任何简单多边形的交点——甚至不必是凸多边形!
如果你对一个更图形化的解决方案感兴趣,甚至在(平面上)旋转的矩形..
演示:https://jsfiddle.net/exodus4d/94mxLvqh/2691/
这个想法是:
将场景转换为原点[0,0] 如果矩形不在平面上,则旋转中心应在 (0,0) 将场景旋转回平面 计算交点
const hasIntersection = ({x: cx, y: cy, r: cr}, {x, y, width, height}) => { const distX = Math.abs(cx - x - width / 2); const distY = Math.abs(cy - y - height / 2); if (distX > (width / 2 + cr)) { return false; } if (distY > (height / 2 + cr)) { return false; } if (distX <= (width / 2)) { return true; } if (distY <= (height / 2)) { return true; } const Δx = distX - width / 2; const Δy = distY - height / 2; return Δx * Δx + Δy * Δy <= cr * cr; }; const rect = new DOMRect(50, 20, 100, 50); const circ1 = new DOMPoint(160, 80); circ1.r = 20; const circ2 = new DOMPoint(80, 95); circ2.r = 20; const canvas = document.getElementById('canvas'); const ctx = canvas.getContext('2d'); ctx.strokeRect(rect.x, rect.y, rect.width, rect.height); ctx.beginPath(); ctx.strokeStyle = hasIntersection(circ1, rect) ? 'red' : 'green'; ctx.arc(circ1.x, circ1.y, circ1.r, 0, 2 * Math.PI); ctx.stroke(); ctx.beginPath(); ctx.strokeStyle = hasIntersection(circ2, rect) ? 'red' : 'green'; ctx.arc(circ2.x, circ2.y, circ2.r, 0, 2 * Math.PI); ctx.stroke(); <canvas id="canvas"></canvas>
提示:而不是旋转矩形(4点)。你可以向相反的方向旋转圆(1点)。