将清单大致等份的最佳方法是什么?例如,如果列表有7个元素,并将其分为2部分,我们希望其中一部分有3个元素,而另一部分应该有4个元素。

我正在寻找类似even_split(L, n)的东西,它将L分解为n部分。

def chunks(L, n):
    """ Yield successive n-sized chunks from L.
    """
    for i in range(0, len(L), n):
        yield L[i:i+n]

上面的代码给出了3个块,而不是3个块。我可以简单地转置(遍历这个,取每列的第一个元素,称之为第一部分,然后取第二个元素,把它放在第二部分,等等),但这破坏了项目的顺序。


当前回答

def chunkify(target_list, chunk_size):
    return [target_list[i:i+chunk_size] for i in range(0, len(target_list), chunk_size)]

>>> l = [5432, 432, 67, "fdas", True, True, False, (4324,131), 876, "ofsa", 8, 909, b'765']
>>> print(chunkify(l, 3))
>>> [[5432, 432, 67], ['fdas', True, True], [False, (4324, 131), 876], ['ofsa', 8, 909], [b'765']]

其他回答

这是另一种变体,它将“剩余”元素均匀地分布在所有块中,一次一个,直到一个都不剩。在这个实现中,较大的块出现在流程的开头。

def chunks(l, k):
  """ Yield k successive chunks from l."""
  if k < 1:
    yield []
    raise StopIteration
  n = len(l)
  avg = n/k
  remainders = n % k
  start, end = 0, avg
  while start < n:
    if remainders > 0:
      end = end + 1
      remainders = remainders - 1
    yield l[start:end]
    start, end = end, end+avg

例如,从14个元素的列表中生成4个块:

>>> list(chunks(range(14), 4))
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10], [11, 12, 13]]
>>> map(len, list(chunks(range(14), 4)))
[4, 4, 3, 3]

在这种情况下,我自己编写了代码:

def chunk_ports(port_start, port_end, portions):
    if port_end < port_start:
        return None

    total = port_end - port_start + 1

    fractions = int(math.floor(float(total) / portions))

    results = []

    # No enough to chuck.
    if fractions < 1:
        return None

    # Reverse, so any additional items would be in the first range.
    _e = port_end
    for i in range(portions, 0, -1):
        print "i", i

        if i == 1:
            _s = port_start
        else:
            _s = _e - fractions + 1

        results.append((_s, _e))

        _e = _s - 1

    results.reverse()

    return results

Divide_ports(1,10,9)将返回

[(1, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10)]

这里有一个生成器,可以处理任何正(整数)数量的块。如果块的数量大于输入列表的长度,一些块将为空。该算法在短块和长块之间交替,而不是将它们分开。

我还包含了一些用于测试ragged_chunks函数的代码。

''' Split a list into "ragged" chunks

    The size of each chunk is either the floor or ceiling of len(seq) / chunks

    chunks can be > len(seq), in which case there will be empty chunks

    Written by PM 2Ring 2017.03.30
'''

def ragged_chunks(seq, chunks):
    size = len(seq)
    start = 0
    for i in range(1, chunks + 1):
        stop = i * size // chunks
        yield seq[start:stop]
        start = stop

# test

def test_ragged_chunks(maxsize):
    for size in range(0, maxsize):
        seq = list(range(size))
        for chunks in range(1, size + 1):
            minwidth = size // chunks
            #ceiling division
            maxwidth = -(-size // chunks)
            a = list(ragged_chunks(seq, chunks))
            sizes = [len(u) for u in a]
            deltas = all(minwidth <= u <= maxwidth for u in sizes)
            assert all((sum(a, []) == seq, sum(sizes) == size, deltas))
    return True

if test_ragged_chunks(100):
    print('ok')

我们可以通过将乘法导出到range调用中来稍微提高效率,但我认为以前的版本更易于阅读(和dry)。

def ragged_chunks(seq, chunks):
    size = len(seq)
    start = 0
    for i in range(size, size * chunks + 1, size):
        stop = i // chunks
        yield seq[start:stop]
        start = stop

由于舍入错误,此代码被破坏。不要使用它!!

assert len(chunkIt([1,2,3], 10)) == 10  # fails

这里有一个可行的方法:

def chunkIt(seq, num):
    avg = len(seq) / float(num)
    out = []
    last = 0.0

    while last < len(seq):
        out.append(seq[int(last):int(last + avg)])
        last += avg

    return out

测试:

>>> chunkIt(range(10), 3)
[[0, 1, 2], [3, 4, 5], [6, 7, 8, 9]]
>>> chunkIt(range(11), 3)
[[0, 1, 2], [3, 4, 5, 6], [7, 8, 9, 10]]
>>> chunkIt(range(12), 3)
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]

1>

import numpy as np

data # your array

total_length = len(data)
separate = 10
sub_array_size = total_length // separate
safe_separate = sub_array_size * separate

splited_lists = np.split(np.array(data[:safe_separate]), separate)
splited_lists[separate - 1] = np.concatenate(splited_lists[separate - 1], 
np.array(data[safe_separate:total_length]))

splited_lists # your output

2>

splited_lists = np.array_split(np.array(data), separate)