将清单大致等份的最佳方法是什么?例如,如果列表有7个元素,并将其分为2部分,我们希望其中一部分有3个元素,而另一部分应该有4个元素。

我正在寻找类似even_split(L, n)的东西,它将L分解为n部分。

def chunks(L, n):
    """ Yield successive n-sized chunks from L.
    """
    for i in range(0, len(L), n):
        yield L[i:i+n]

上面的代码给出了3个块,而不是3个块。我可以简单地转置(遍历这个,取每列的第一个元素,称之为第一部分,然后取第二个元素,把它放在第二部分,等等),但这破坏了项目的顺序。


当前回答

1>

import numpy as np

data # your array

total_length = len(data)
separate = 10
sub_array_size = total_length // separate
safe_separate = sub_array_size * separate

splited_lists = np.split(np.array(data[:safe_separate]), separate)
splited_lists[separate - 1] = np.concatenate(splited_lists[separate - 1], 
np.array(data[safe_separate:total_length]))

splited_lists # your output

2>

splited_lists = np.array_split(np.array(data), separate)

其他回答

假设你想把一个列表[1、2、3、4、5、6、7、8]分成3个元素列表

如[[1,2,3],[4,5,6],[7,8]],如果剩下的最后一个元素小于3,则将它们分组在一起。

my_list = [1, 2, 3, 4, 5, 6, 7, 8]
my_list2 = [my_list[i:i+3] for i in range(0, len(my_list), 3)]
print(my_list2)

输出:[[1,2,3],[4,5,6],[7,8]]

其中一部分的长度为3。用你自己的块大小替换3。

这就是numpy.array_split*使用d'être的原因:

>>> import numpy as np
>>> print(*np.array_split(range(10), 3))
[0 1 2 3] [4 5 6] [7 8 9]
>>> print(*np.array_split(range(10), 4))
[0 1 2] [3 4 5] [6 7] [8 9]
>>> print(*np.array_split(range(10), 5))
[0 1] [2 3] [4 5] [6 7] [8 9]

*贷方是6号房间的零比雷埃夫斯

使用numpy实现。linspace方法。

只需指定要将数组分成的部分的数量。各部门的规模将几乎相同。

例子:

import numpy as np   
a=np.arange(10)
print "Input array:",a 
parts=3
i=np.linspace(np.min(a),np.max(a)+1,parts+1)
i=np.array(i,dtype='uint16') # Indices should be floats
split_arr=[]
for ind in range(i.size-1):
    split_arr.append(a[i[ind]:i[ind+1]]
print "Array split in to %d parts : "%(parts),split_arr

给:

Input array: [0 1 2 3 4 5 6 7 8 9]
Array split in to 3 parts :  [array([0, 1, 2]), array([3, 4, 5]), array([6, 7, 8, 9])]

在这种情况下,我自己编写了代码:

def chunk_ports(port_start, port_end, portions):
    if port_end < port_start:
        return None

    total = port_end - port_start + 1

    fractions = int(math.floor(float(total) / portions))

    results = []

    # No enough to chuck.
    if fractions < 1:
        return None

    # Reverse, so any additional items would be in the first range.
    _e = port_end
    for i in range(portions, 0, -1):
        print "i", i

        if i == 1:
            _s = port_start
        else:
            _s = _e - fractions + 1

        results.append((_s, _e))

        _e = _s - 1

    results.reverse()

    return results

Divide_ports(1,10,9)将返回

[(1, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10)]

另一种方法是这样的,这里的想法是用石斑鱼,但要去掉None。在本例中,所有的'small_parts'都由列表第一部分的元素组成,'larger_parts'则由列表的后一部分组成。' bigger parts'的长度为len(small_parts) + 1。我们需要把x看成两个不同的子部分。

from itertools import izip_longest

import numpy as np

def grouper(n, iterable, fillvalue=None): # This is grouper from itertools
    "grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
    args = [iter(iterable)] * n
    return izip_longest(fillvalue=fillvalue, *args)

def another_chunk(x,num):
    extra_ele = len(x)%num #gives number of parts that will have an extra element 
    small_part = int(np.floor(len(x)/num)) #gives number of elements in a small part

    new_x = list(grouper(small_part,x[:small_part*(num-extra_ele)]))
    new_x.extend(list(grouper(small_part+1,x[small_part*(num-extra_ele):])))

    return new_x

我设置它的方式返回一个元组列表:

>>> x = range(14)
>>> another_chunk(x,3)
[(0, 1, 2, 3), (4, 5, 6, 7, 8), (9, 10, 11, 12, 13)]
>>> another_chunk(x,4)
[(0, 1, 2), (3, 4, 5), (6, 7, 8, 9), (10, 11, 12, 13)]
>>> another_chunk(x,5)
[(0, 1), (2, 3, 4), (5, 6, 7), (8, 9, 10), (11, 12, 13)]
>>>