我有一个具有以下列名的熊猫数据框架:

Result1, Test1, Result2, Test2, Result3, Test3等…

我想删除所有名称包含单词“Test”的列。这些列的数量不是静态的,而是取决于前面的函数。

我该怎么做呢?


当前回答

使用数据帧。选择方法:

In [38]: df = DataFrame({'Test1': randn(10), 'Test2': randn(10), 'awesome': randn(10)})

In [39]: df.select(lambda x: not re.search('Test\d+', x), axis=1)
Out[39]:
   awesome
0    1.215
1    1.247
2    0.142
3    0.169
4    0.137
5   -0.971
6    0.736
7    0.214
8    0.111
9   -0.214

其他回答

该方法在适当的位置执行所有操作。许多其他答案会复制,效率不高:

df.drop(df.columns[df.columns.str.contains('Test')], axis=1, inplace=True)

更便宜,更快,习惯用法:str.contains

在最近版本的pandas中,可以在索引和列上使用字符串方法。这里str.startswith似乎很合适。

删除以给定子字符串开头的所有列:

df.columns.str.startswith('Test')
# array([ True, False, False, False])

df.loc[:,~df.columns.str.startswith('Test')]

  toto test2 riri
0    x     x    x
1    x     x    x

对于大小写不敏感的匹配,你可以使用基于正则表达式的匹配str.contains和一个SOL锚:

df.columns.str.contains('^test', case=False)
# array([ True, False,  True, False])

df.loc[:,~df.columns.str.contains('^test', case=False)] 

  toto riri
0    x    x
1    x    x

如果混合类型是可能的,指定na=False。

你可以用df。过滤器获取匹配字符串的列列表,然后使用df.drop

resdf = df.drop(df.filter(like='Test',axis=1).columns.to_list(), axis=1)
import pandas as pd

import numpy as np

array=np.random.random((2,4))

df=pd.DataFrame(array, columns=('Test1', 'toto', 'test2', 'riri'))

print df

      Test1      toto     test2      riri
0  0.923249  0.572528  0.845464  0.144891
1  0.020438  0.332540  0.144455  0.741412

cols = [c for c in df.columns if c.lower()[:4] != 'test']

df=df[cols]

print df
       toto      riri
0  0.572528  0.144891
1  0.332540  0.741412

使用正则表达式匹配所有不包含不需要的单词的列:

df = df.filter(regex='^((?!badword).)*$')