我有一个具有以下列名的熊猫数据框架:
Result1, Test1, Result2, Test2, Result3, Test3等…
我想删除所有名称包含单词“Test”的列。这些列的数量不是静态的,而是取决于前面的函数。
我该怎么做呢?
我有一个具有以下列名的熊猫数据框架:
Result1, Test1, Result2, Test2, Result3, Test3等…
我想删除所有名称包含单词“Test”的列。这些列的数量不是静态的,而是取决于前面的函数。
我该怎么做呢?
当前回答
你可以用df。过滤器获取匹配字符串的列列表,然后使用df.drop
resdf = df.drop(df.filter(like='Test',axis=1).columns.to_list(), axis=1)
其他回答
该方法在适当的位置执行所有操作。许多其他答案会复制,效率不高:
df.drop(df.columns[df.columns.str.contains('Test')], axis=1, inplace=True)
使用正则表达式匹配所有不包含不需要的单词的列:
df = df.filter(regex='^((?!badword).)*$')
import pandas as pd
import numpy as np
array=np.random.random((2,4))
df=pd.DataFrame(array, columns=('Test1', 'toto', 'test2', 'riri'))
print df
Test1 toto test2 riri
0 0.923249 0.572528 0.845464 0.144891
1 0.020438 0.332540 0.144455 0.741412
cols = [c for c in df.columns if c.lower()[:4] != 'test']
df=df[cols]
print df
toto riri
0 0.572528 0.144891
1 0.332540 0.741412
删除包含正则表达式的列名列表时的解决方案。我更喜欢这种方法,因为我经常编辑下拉列表。为下拉列表使用负筛选器正则表达式。
drop_column_names = ['A','B.+','C.*']
drop_columns_regex = '^(?!(?:'+'|'.join(drop_column_names)+')$)'
print('Dropping columns:',', '.join([c for c in df.columns if re.search(drop_columns_regex,c)]))
df = df.filter(regex=drop_columns_regex,axis=1)
你可以用df。过滤器获取匹配字符串的列列表,然后使用df.drop
resdf = df.drop(df.filter(like='Test',axis=1).columns.to_list(), axis=1)