我有一个具有以下列名的熊猫数据框架:
Result1, Test1, Result2, Test2, Result3, Test3等…
我想删除所有名称包含单词“Test”的列。这些列的数量不是静态的,而是取决于前面的函数。
我该怎么做呢?
我有一个具有以下列名的熊猫数据框架:
Result1, Test1, Result2, Test2, Result3, Test3等…
我想删除所有名称包含单词“Test”的列。这些列的数量不是静态的,而是取决于前面的函数。
我该怎么做呢?
当前回答
这可以在一行中完成:
df = df.drop(df.filter(regex='Test').columns, axis=1)
其他回答
这可以在一行中完成:
df = df.drop(df.filter(regex='Test').columns, axis=1)
你可以用df。过滤器获取匹配字符串的列列表,然后使用df.drop
resdf = df.drop(df.filter(like='Test',axis=1).columns.to_list(), axis=1)
使用正则表达式匹配所有不包含不需要的单词的列:
df = df.filter(regex='^((?!badword).)*$')
这里有一种方法:
df = df[df.columns.drop(list(df.filter(regex='Test')))]
你可以使用'filter'过滤掉你想要的列
import pandas as pd
import numpy as np
data2 = [{'test2': 1, 'result1': 2}, {'test': 5, 'result34': 10, 'c': 20}]
df = pd.DataFrame(data2)
df
c result1 result34 test test2
0 NaN 2.0 NaN NaN 1.0
1 20.0 NaN 10.0 5.0 NaN
现在过滤器
df.filter(like='result',axis=1)
得到. .
result1 result34
0 2.0 NaN
1 NaN 10.0