假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?

是否可以只使用调用堆栈作为辅助存储?


当前回答

下面的方法使用DFS算法来获取特定深度的所有节点——这与对该级别进行BFS相同。如果您找到树的深度,并对所有级别执行此操作,结果将与BFS相同。

public void PrintLevelNodes(Tree root, int level) {
    if (root != null) {
        if (level == 0) {
            Console.Write(root.Data);
            return;
        }
        PrintLevelNodes(root.Left, level - 1);
        PrintLevelNodes(root.Right, level - 1);
    }
}

for (int i = 0; i < depth; i++) {
    PrintLevelNodes(root, i);
}

找到树的深度是小菜一碟:

public int MaxDepth(Tree root) {
    if (root == null) {
        return 0;
    } else {
        return Math.Max(MaxDepth(root.Left), MaxDepth(root.Right)) + 1;
    }
}

其他回答

c#实现的递归宽度优先搜索二叉树算法。

二叉树数据可视化

IDictionary<string, string[]> graph = new Dictionary<string, string[]> {
    {"A", new [] {"B", "C"}},
    {"B", new [] {"D", "E"}},
    {"C", new [] {"F", "G"}},
    {"E", new [] {"H"}}
};

void Main()
{
    var pathFound = BreadthFirstSearch("A", "H", new string[0]);
    Console.WriteLine(pathFound); // [A, B, E, H]

    var pathNotFound = BreadthFirstSearch("A", "Z", new string[0]);
    Console.WriteLine(pathNotFound); // []
}

IEnumerable<string> BreadthFirstSearch(string start, string end, IEnumerable<string> path)
{
    if (start == end)
    {
        return path.Concat(new[] { end });
    }

    if (!graph.ContainsKey(start)) { return new string[0]; }    

    return graph[start].SelectMany(letter => BreadthFirstSearch(letter, end, path.Concat(new[] { start })));
}

如果你想让算法不仅适用于二叉树,而且适用于有两个或两个以上节点指向同一个节点的图,你必须通过持有已经访问过的节点列表来避免自循环。实现可能是这样的。

图形数据可视化

IDictionary<string, string[]> graph = new Dictionary<string, string[]> {
    {"A", new [] {"B", "C"}},
    {"B", new [] {"D", "E"}},
    {"C", new [] {"F", "G", "E"}},
    {"E", new [] {"H"}}
};

void Main()
{
    var pathFound = BreadthFirstSearch("A", "H", new string[0], new List<string>());
    Console.WriteLine(pathFound); // [A, B, E, H]

    var pathNotFound = BreadthFirstSearch("A", "Z", new string[0], new List<string>());
    Console.WriteLine(pathNotFound); // []
}

IEnumerable<string> BreadthFirstSearch(string start, string end, IEnumerable<string> path, IList<string> visited)
{
    if (start == end)
    {
        return path.Concat(new[] { end });
    }

    if (!graph.ContainsKey(start)) { return new string[0]; }


    return graph[start].Aggregate(new string[0], (acc, letter) =>
    {
        if (visited.Contains(letter))
        {
            return acc;
        }

        visited.Add(letter);

        var result = BreadthFirstSearch(letter, end, path.Concat(new[] { start }), visited);
        return acc.Concat(result).ToArray();
    });
}

下面是一个python实现:

graph = {'A': ['B', 'C'],
         'B': ['C', 'D'],
         'C': ['D'],
         'D': ['C'],
         'E': ['F'],
         'F': ['C']}

def bfs(paths, goal):
    if not paths:
        raise StopIteration

    new_paths = []
    for path in paths:
        if path[-1] == goal:
            yield path

        last = path[-1]
        for neighbor in graph[last]:
            if neighbor not in path:
                new_paths.append(path + [neighbor])
    yield from bfs(new_paths, goal)


for path in bfs([['A']], 'D'):
    print(path)

我找不到一种完全递归的方法(没有任何辅助数据结构)。但是如果队列Q是通过引用传递的,那么你可以得到下面这个愚蠢的尾部递归函数:

BFS(Q)
{
  if (|Q| > 0)
     v <- Dequeue(Q)
     Traverse(v)
     foreach w in children(v)
        Enqueue(Q, w)    

     BFS(Q)
}

我必须实现以BFS顺序输出的堆遍历。它实际上不是BFS,但完成了相同的任务。

private void getNodeValue(Node node, int index, int[] array) {
    array[index] = node.value;
    index = (index*2)+1;

    Node left = node.leftNode;
    if (left!=null) getNodeValue(left,index,array);
    Node right = node.rightNode;
    if (right!=null) getNodeValue(right,index+1,array);
}

public int[] getHeap() {
    int[] nodes = new int[size];
    getNodeValue(root,0,nodes);
    return nodes;
}

二进制(或n-ary)树的BFS可以在没有队列的情况下递归完成,如下所示(在Java中):

public class BreathFirst {

    static class Node {
        Node(int value) {
            this(value, 0);
        }
        Node(int value, int nChildren) {
            this.value = value;
            this.children = new Node[nChildren];
        }
        int value;
        Node[] children;
    }

    static void breathFirst(Node root, Consumer<? super Node> printer) {
        boolean keepGoing = true;
        for (int level = 0; keepGoing; level++) {
            keepGoing = breathFirst(root, printer, level);
        }
    }

    static boolean breathFirst(Node node, Consumer<? super Node> printer, int depth) {
        if (depth < 0 || node == null) return false;
        if (depth == 0) {
            printer.accept(node);
            return true;
        }
        boolean any = false;
        for (final Node child : node.children) {
            any |= breathFirst(child, printer, depth - 1);
        }
        return any;
    }
}

按升序遍历打印数字1-12的示例:

public static void main(String... args) {
    //            1
    //          / | \
    //        2   3   4
    //      / |       | \
    //    5   6       7  8
    //  / |           | \
    // 9  10         11  12

    Node root = new Node(1, 3);
    root.children[0] = new Node(2, 2);
    root.children[1] = new Node(3);
    root.children[2] = new Node(4, 2);
    root.children[0].children[0] = new Node(5, 2);
    root.children[0].children[1] = new Node(6);
    root.children[2].children[0] = new Node(7, 2);
    root.children[2].children[1] = new Node(8);
    root.children[0].children[0].children[0] = new Node(9);
    root.children[0].children[0].children[1] = new Node(10);
    root.children[2].children[0].children[0] = new Node(11);
    root.children[2].children[0].children[1] = new Node(12);

    breathFirst(root, n -> System.out.println(n.value));
}