假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
当前回答
下面的方法使用DFS算法来获取特定深度的所有节点——这与对该级别进行BFS相同。如果您找到树的深度,并对所有级别执行此操作,结果将与BFS相同。
public void PrintLevelNodes(Tree root, int level) {
if (root != null) {
if (level == 0) {
Console.Write(root.Data);
return;
}
PrintLevelNodes(root.Left, level - 1);
PrintLevelNodes(root.Right, level - 1);
}
}
for (int i = 0; i < depth; i++) {
PrintLevelNodes(root, i);
}
找到树的深度是小菜一碟:
public int MaxDepth(Tree root) {
if (root == null) {
return 0;
} else {
return Math.Max(MaxDepth(root.Left), MaxDepth(root.Right)) + 1;
}
}
其他回答
(我假设这只是某种思维练习,或者甚至是一个恶作剧的家庭作业/面试问题,但是我想我可以想象一些奇怪的场景,由于某种原因不允许有任何堆空间[一些非常糟糕的自定义内存管理器?一些奇怪的运行时/操作系统问题?当你仍然可以访问堆栈时…)
宽度优先遍历传统上使用队列,而不是堆栈。队列和堆栈的性质几乎是相反的,因此试图使用调用堆栈(这是一个堆栈,因此得名)作为辅助存储(队列)几乎是注定要失败的,除非您对调用堆栈做了一些不应该做的愚蠢可笑的事情。
同样,您尝试实现的任何非尾递归本质上都是向算法添加堆栈。这使得它不再在二叉树上进行广度优先搜索,因此传统BFS的运行时和诸如此类的东西不再完全适用。当然,您总是可以简单地将任何循环转换为递归调用,但这并不是任何有意义的递归。
However, there are ways, as demonstrated by others, to implement something that follows the semantics of BFS at some cost. If the cost of comparison is expensive but node traversal is cheap, then as @Simon Buchan did, you can simply run an iterative depth-first search, only processing the leaves. This would mean no growing queue stored in the heap, just a local depth variable, and stacks being built up over and over on the call stack as the tree is traversed over and over again. And as @Patrick noted, a binary tree backed by an array is typically stored in breadth-first traversal order anyway, so a breadth-first search on that would be trivial, also without needing an auxiliary queue.
下面是递归BFS的Scala 2.11.4实现。为了简洁起见,我牺牲了尾部调用优化,但是TCOd版本非常相似。参见@snv的帖子。
import scala.collection.immutable.Queue
object RecursiveBfs {
def bfs[A](tree: Tree[A], target: A): Boolean = {
bfs(Queue(tree), target)
}
private def bfs[A](forest: Queue[Tree[A]], target: A): Boolean = {
forest.dequeueOption exists {
case (E, tail) => bfs(tail, target)
case (Node(value, _, _), _) if value == target => true
case (Node(_, l, r), tail) => bfs(tail.enqueue(List(l, r)), target)
}
}
sealed trait Tree[+A]
case class Node[+A](data: A, left: Tree[A], right: Tree[A]) extends Tree[A]
case object E extends Tree[Nothing]
}
在学习AlgoExpert时,对这个问题进行了改编。提示符中已经提供了以下Class。这里是python中的迭代和递归解决方案。这个问题的目标是返回一个输出数组,其中列出了按访问顺序排列的节点名称。如果遍历顺序为A -> B -> D -> F,则输出为['A','B','D','F']
class Node:
def __init__(self, name):
self.children = []
self.name = name
def addChild(self, name):
self.children.append(Node(name))
return self
递归
def breadthFirstSearch(self, array):
return self._bfs(array, [self])
def _bfs(self, array, visited):
# Base case - no more nodes to visit
if len(visited) == 0:
return array
node = visited.pop(0)
array.append(node.name)
visited.extend(node.children)
return self._bfs(array, visited)
迭代
def breadthFirstSearch(self, array):
array.append(self.name)
queue = [self]
while len(queue) > 0:
node = queue.pop(0)
for child in node.children:
array.append(child.name)
queue.append(child)
return array
#include <bits/stdc++.h>
using namespace std;
#define Max 1000
vector <int> adj[Max];
bool visited[Max];
void bfs_recursion_utils(queue<int>& Q) {
while(!Q.empty()) {
int u = Q.front();
visited[u] = true;
cout << u << endl;
Q.pop();
for(int i = 0; i < (int)adj[u].size(); ++i) {
int v = adj[u][i];
if(!visited[v])
Q.push(v), visited[v] = true;
}
bfs_recursion_utils(Q);
}
}
void bfs_recursion(int source, queue <int>& Q) {
memset(visited, false, sizeof visited);
Q.push(source);
bfs_recursion_utils(Q);
}
int main(void) {
queue <int> Q;
adj[1].push_back(2);
adj[1].push_back(3);
adj[1].push_back(4);
adj[2].push_back(5);
adj[2].push_back(6);
adj[3].push_back(7);
bfs_recursion(1, Q);
return 0;
}
我已经用c++做了一个程序,它是在联合和不联合图工作。
#include <queue>
#include "iostream"
#include "vector"
#include "queue"
using namespace std;
struct Edge {
int source,destination;
};
class Graph{
int V;
vector<vector<int>> adjList;
public:
Graph(vector<Edge> edges,int V){
this->V = V;
adjList.resize(V);
for(auto i : edges){
adjList[i.source].push_back(i.destination);
// adjList[i.destination].push_back(i.source);
}
}
void BFSRecursivelyJoinandDisjointtGraphUtil(vector<bool> &discovered, queue<int> &q);
void BFSRecursivelyJointandDisjointGraph(int s);
void printGraph();
};
void Graph :: printGraph()
{
for (int i = 0; i < this->adjList.size(); i++)
{
cout << i << " -- ";
for (int v : this->adjList[i])
cout <<"->"<< v << " ";
cout << endl;
}
}
void Graph ::BFSRecursivelyJoinandDisjointtGraphUtil(vector<bool> &discovered, queue<int> &q) {
if (q.empty())
return;
int v = q.front();
q.pop();
cout << v <<" ";
for (int u : this->adjList[v])
{
if (!discovered[u])
{
discovered[u] = true;
q.push(u);
}
}
BFSRecursivelyJoinandDisjointtGraphUtil(discovered, q);
}
void Graph ::BFSRecursivelyJointandDisjointGraph(int s) {
vector<bool> discovered(V, false);
queue<int> q;
for (int i = s; i < V; i++) {
if (discovered[i] == false)
{
discovered[i] = true;
q.push(i);
BFSRecursivelyJoinandDisjointtGraphUtil(discovered, q);
}
}
}
int main()
{
vector<Edge> edges =
{
{0, 1}, {0, 2}, {1, 2}, {2, 0}, {2,3},{3,3}
};
int V = 4;
Graph graph(edges, V);
// graph.printGraph();
graph.BFSRecursivelyJointandDisjointGraph(2);
cout << "\n";
edges = {
{0,4},{1,2},{1,3},{1,4},{2,3},{3,4}
};
Graph graph2(edges,5);
graph2.BFSRecursivelyJointandDisjointGraph(0);
return 0;
}