假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?

是否可以只使用调用堆栈作为辅助存储?


当前回答

下面使用Haskell对我来说似乎很自然。在树的各个层次上递归迭代(这里我将名字收集到一个大的有序字符串中,以显示树的路径):

data Node = Node {name :: String, children :: [Node]}
aTree = Node "r" [Node "c1" [Node "gc1" [Node "ggc1" []], Node "gc2" []] , Node "c2" [Node "gc3" []], Node "c3" [] ]
breadthFirstOrder x = levelRecurser [x]
    where levelRecurser level = if length level == 0
                                then ""
                                else concat [name node ++ " " | node <- level] ++ levelRecurser (concat [children node | node <- level])

其他回答

二进制(或n-ary)树的BFS可以在没有队列的情况下递归完成,如下所示(在Java中):

public class BreathFirst {

    static class Node {
        Node(int value) {
            this(value, 0);
        }
        Node(int value, int nChildren) {
            this.value = value;
            this.children = new Node[nChildren];
        }
        int value;
        Node[] children;
    }

    static void breathFirst(Node root, Consumer<? super Node> printer) {
        boolean keepGoing = true;
        for (int level = 0; keepGoing; level++) {
            keepGoing = breathFirst(root, printer, level);
        }
    }

    static boolean breathFirst(Node node, Consumer<? super Node> printer, int depth) {
        if (depth < 0 || node == null) return false;
        if (depth == 0) {
            printer.accept(node);
            return true;
        }
        boolean any = false;
        for (final Node child : node.children) {
            any |= breathFirst(child, printer, depth - 1);
        }
        return any;
    }
}

按升序遍历打印数字1-12的示例:

public static void main(String... args) {
    //            1
    //          / | \
    //        2   3   4
    //      / |       | \
    //    5   6       7  8
    //  / |           | \
    // 9  10         11  12

    Node root = new Node(1, 3);
    root.children[0] = new Node(2, 2);
    root.children[1] = new Node(3);
    root.children[2] = new Node(4, 2);
    root.children[0].children[0] = new Node(5, 2);
    root.children[0].children[1] = new Node(6);
    root.children[2].children[0] = new Node(7, 2);
    root.children[2].children[1] = new Node(8);
    root.children[0].children[0].children[0] = new Node(9);
    root.children[0].children[0].children[1] = new Node(10);
    root.children[2].children[0].children[0] = new Node(11);
    root.children[2].children[0].children[1] = new Node(12);

    breathFirst(root, n -> System.out.println(n.value));
}

愚蠢的方式:

template<typename T>
struct Node { Node* left; Node* right; T value; };

template<typename T, typename P>
bool searchNodeDepth(Node<T>* node, Node<T>** result, int depth, P pred) {
    if (!node) return false;
    if (!depth) {
        if (pred(node->value)) {
            *result = node;
        }
        return true;
    }
    --depth;
    searchNodeDepth(node->left, result, depth, pred);
    if (!*result)
        searchNodeDepth(node->right, result, depth, pred);
    return true;
}

template<typename T, typename P>
Node<T>* searchNode(Node<T>* node, P pred) {
    Node<T>* result = NULL;
    int depth = 0;
    while (searchNodeDepth(node, &result, depth, pred) && !result)
        ++depth;
    return result;
}

int main()
{
    // a c   f
    //  b   e
    //    d
    Node<char*>
        a = { NULL, NULL, "A" },
        c = { NULL, NULL, "C" },
        b = { &a, &c, "B" },
        f = { NULL, NULL, "F" },
        e = { NULL, &f, "E" },
        d = { &b, &e, "D" };

    Node<char*>* found = searchNode(&d, [](char* value) -> bool {
        printf("%s\n", value);
        return !strcmp((char*)value, "F");
    });

    printf("found: %s\n", found->value);

    return 0;
}

我认为这可以使用指针来完成,而不使用任何队列。

基本上我们在任何地方都维护两个指针,一个指向父结点,另一个指向待处理的子结点(链接列表指向所有已处理的子结点)

现在你只需分配子进程的指针&当父进程处理完成时,你只需让子进程成为父进程进行下一层的处理

以下是我的代码:

//Tree Node
struct Node {
    int val;
    Node* left;
    Node* right;
    Node* next;

    Node() : val(0), left(NULL), right(NULL), next(NULL) {}

    Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}

    Node(int _val, Node* _left, Node* _right, Node* _next)
        : val(_val), left(_left), right(_right), next(_next) {}
};
    

/ / Algorightm:

    void LevelTraverse(Node* parent,Node* chidstart,Node* childend ){
        if(!parent && !chidstart) return;  // we processed everything
        
        if(!parent && chidstart){ //finished processing last level
            parent=chidstart;chidstart=childend=NULL; // assgin child to parent for processing next level
            LevelTraverse(parent,chidstart,childend);
        }else if(parent && !chidstart){ // This is new level first node tobe processed
            Node* temp=parent; parent=parent->next;
            if(temp->left) { childend=chidstart=temp->left; }
            if(chidstart){
                if(temp->right) { childend->next=temp->right; childend=temp->right; }
            }else{
                if(temp->right) { childend=chidstart=temp->right; }
            }
            LevelTraverse(parent,chidstart,childend);
        }else if(parent && chidstart){ //we are in mid of some level processing
            Node* temp=parent; parent=parent->next;
            if(temp->left) { childend->next=temp->left; childend=temp->left; }
            if(temp->right) { childend->next=temp->right; childend=temp->right; }
            LevelTraverse(parent,chidstart,childend);
        }
    }

//驱动代码:

    Node* connect(Node* root) {
        if(!root) return NULL;
        Node* parent; Node* childs, *childe; parent=childs=childe=NULL;
        parent=root;
        LevelTraverse(parent, childs, childe);
        return root;
    }
#include <bits/stdc++.h>
using namespace std;
#define Max 1000

vector <int> adj[Max];
bool visited[Max];

void bfs_recursion_utils(queue<int>& Q) {
    while(!Q.empty()) {
        int u = Q.front();
        visited[u] = true;
        cout << u << endl;
        Q.pop();
        for(int i = 0; i < (int)adj[u].size(); ++i) {
            int v = adj[u][i];
            if(!visited[v])
                Q.push(v), visited[v] = true;
        }
        bfs_recursion_utils(Q);
    }
}

void bfs_recursion(int source, queue <int>& Q) {
    memset(visited, false, sizeof visited);
    Q.push(source);
    bfs_recursion_utils(Q);
}

int main(void) {
    queue <int> Q;
    adj[1].push_back(2);
    adj[1].push_back(3);
    adj[1].push_back(4);

    adj[2].push_back(5);
    adj[2].push_back(6);

    adj[3].push_back(7);

    bfs_recursion(1, Q);
    return 0;
}

我已经用c++做了一个程序,它是在联合和不联合图工作。

    #include <queue>
#include "iostream"
#include "vector"
#include "queue"

using namespace std;

struct Edge {
    int source,destination;
};

class Graph{
    int V;
    vector<vector<int>> adjList;
public:

    Graph(vector<Edge> edges,int V){
        this->V = V;
        adjList.resize(V);
        for(auto i : edges){
            adjList[i.source].push_back(i.destination);
            //     adjList[i.destination].push_back(i.source);
        }
    }
    void BFSRecursivelyJoinandDisjointtGraphUtil(vector<bool> &discovered, queue<int> &q);
    void BFSRecursivelyJointandDisjointGraph(int s);
    void printGraph();


};

void Graph :: printGraph()
{
    for (int i = 0; i < this->adjList.size(); i++)
    {
        cout << i << " -- ";
        for (int v : this->adjList[i])
            cout <<"->"<< v << " ";
        cout << endl;
    }
}


void Graph ::BFSRecursivelyJoinandDisjointtGraphUtil(vector<bool> &discovered, queue<int> &q) {
    if (q.empty())
        return;
    int v = q.front();
    q.pop();
    cout << v <<" ";
    for (int u : this->adjList[v])
    {
        if (!discovered[u])
        {
            discovered[u] = true;
            q.push(u);
        }
    }
    BFSRecursivelyJoinandDisjointtGraphUtil(discovered, q);

}

void Graph ::BFSRecursivelyJointandDisjointGraph(int s) {
    vector<bool> discovered(V, false);
    queue<int> q;

    for (int i = s; i < V; i++) {
        if (discovered[i] == false)
        {
            discovered[i] = true;
            q.push(i);
            BFSRecursivelyJoinandDisjointtGraphUtil(discovered, q);
        }
    }
}

int main()
{

    vector<Edge> edges =
            {
                    {0, 1}, {0, 2}, {1, 2}, {2, 0}, {2,3},{3,3}
            };

    int V = 4;
    Graph graph(edges, V);
 //   graph.printGraph();
    graph.BFSRecursivelyJointandDisjointGraph(2);
    cout << "\n";




    edges = {
            {0,4},{1,2},{1,3},{1,4},{2,3},{3,4}
    };

    Graph graph2(edges,5);

    graph2.BFSRecursivelyJointandDisjointGraph(0);
    return 0;
}