假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?

是否可以只使用调用堆栈作为辅助存储?


当前回答

愚蠢的方式:

template<typename T>
struct Node { Node* left; Node* right; T value; };

template<typename T, typename P>
bool searchNodeDepth(Node<T>* node, Node<T>** result, int depth, P pred) {
    if (!node) return false;
    if (!depth) {
        if (pred(node->value)) {
            *result = node;
        }
        return true;
    }
    --depth;
    searchNodeDepth(node->left, result, depth, pred);
    if (!*result)
        searchNodeDepth(node->right, result, depth, pred);
    return true;
}

template<typename T, typename P>
Node<T>* searchNode(Node<T>* node, P pred) {
    Node<T>* result = NULL;
    int depth = 0;
    while (searchNodeDepth(node, &result, depth, pred) && !result)
        ++depth;
    return result;
}

int main()
{
    // a c   f
    //  b   e
    //    d
    Node<char*>
        a = { NULL, NULL, "A" },
        c = { NULL, NULL, "C" },
        b = { &a, &c, "B" },
        f = { NULL, NULL, "F" },
        e = { NULL, &f, "E" },
        d = { &b, &e, "D" };

    Node<char*>* found = searchNode(&d, [](char* value) -> bool {
        printf("%s\n", value);
        return !strcmp((char*)value, "F");
    });

    printf("found: %s\n", found->value);

    return 0;
}

其他回答

愚蠢的方式:

template<typename T>
struct Node { Node* left; Node* right; T value; };

template<typename T, typename P>
bool searchNodeDepth(Node<T>* node, Node<T>** result, int depth, P pred) {
    if (!node) return false;
    if (!depth) {
        if (pred(node->value)) {
            *result = node;
        }
        return true;
    }
    --depth;
    searchNodeDepth(node->left, result, depth, pred);
    if (!*result)
        searchNodeDepth(node->right, result, depth, pred);
    return true;
}

template<typename T, typename P>
Node<T>* searchNode(Node<T>* node, P pred) {
    Node<T>* result = NULL;
    int depth = 0;
    while (searchNodeDepth(node, &result, depth, pred) && !result)
        ++depth;
    return result;
}

int main()
{
    // a c   f
    //  b   e
    //    d
    Node<char*>
        a = { NULL, NULL, "A" },
        c = { NULL, NULL, "C" },
        b = { &a, &c, "B" },
        f = { NULL, NULL, "F" },
        e = { NULL, &f, "E" },
        d = { &b, &e, "D" };

    Node<char*>* found = searchNode(&d, [](char* value) -> bool {
        printf("%s\n", value);
        return !strcmp((char*)value, "F");
    });

    printf("found: %s\n", found->value);

    return 0;
}

以下是我的完全递归实现的双向图的广度优先搜索的代码,而不使用循环和队列。

public class Graph { public int V; public LinkedList<Integer> adj[]; Graph(int v) { V = v; adj = new LinkedList[v]; for (int i=0; i<v; ++i) adj[i] = new LinkedList<>(); } void addEdge(int v,int w) { adj[v].add(w); adj[w].add(v); } public LinkedList<Integer> getAdjVerted(int vertex) { return adj[vertex]; } public String toString() { String s = ""; for (int i=0;i<adj.length;i++) { s = s +"\n"+i +"-->"+ adj[i] ; } return s; } } //BFS IMPLEMENTATION public static void recursiveBFS(Graph graph, int vertex,boolean visited[], boolean isAdjPrinted[]) { if (!visited[vertex]) { System.out.print(vertex +" "); visited[vertex] = true; } if(!isAdjPrinted[vertex]) { isAdjPrinted[vertex] = true; List<Integer> adjList = graph.getAdjVerted(vertex); printAdjecent(graph, adjList, visited, 0,isAdjPrinted); } } public static void recursiveBFS(Graph graph, List<Integer> vertexList, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < vertexList.size()) { recursiveBFS(graph, vertexList.get(i), visited, isAdjPrinted); recursiveBFS(graph, vertexList, visited, i+1, isAdjPrinted); } } public static void printAdjecent(Graph graph, List<Integer> list, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < list.size()) { if (!visited[list.get(i)]) { System.out.print(list.get(i)+" "); visited[list.get(i)] = true; } printAdjecent(graph, list, visited, i+1, isAdjPrinted); } else { recursiveBFS(graph, list, visited, 0, isAdjPrinted); } }

下面使用Haskell对我来说似乎很自然。在树的各个层次上递归迭代(这里我将名字收集到一个大的有序字符串中,以显示树的路径):

data Node = Node {name :: String, children :: [Node]}
aTree = Node "r" [Node "c1" [Node "gc1" [Node "ggc1" []], Node "gc2" []] , Node "c2" [Node "gc3" []], Node "c3" [] ]
breadthFirstOrder x = levelRecurser [x]
    where levelRecurser level = if length level == 0
                                then ""
                                else concat [name node ++ " " | node <- level] ++ levelRecurser (concat [children node | node <- level])

设v为起始顶点

设G是问题中的图

下面是不使用队列的伪代码

Initially label v as visited as you start from v
BFS(G,v)
    for all adjacent vertices w of v in G:
        if vertex w is not visited:
            label w as visited
    for all adjacent vertices w of v in G:
        recursively call BFS(G,w)

Here is a JavaScript Implementation that fakes Breadth First Traversal with Depth First recursion. I'm storing the node values at each depth inside an array, inside of a hash. If a level already exists(we have a collision), so we just push to the array at that level. You could use an array instead of a JavaScript object as well since our levels are numeric and can serve as array indices. You can return nodes, values, convert to a Linked List, or whatever you want. I'm just returning values for the sake of simplicity.

BinarySearchTree.prototype.breadthFirstRec = function() {

    var levels = {};

    var traverse = function(current, depth) {
        if (!current) return null;
        if (!levels[depth]) levels[depth] = [current.value];
        else levels[depth].push(current.value);
        traverse(current.left, depth + 1);
        traverse(current.right, depth + 1);
    };

    traverse(this.root, 0);
    return levels;
};


var bst = new BinarySearchTree();
bst.add(20, 22, 8, 4, 12, 10, 14, 24);
console.log('Recursive Breadth First: ', bst.breadthFirstRec());
/*Recursive Breadth First:  
{ '0': [ 20 ],
  '1': [ 8, 22 ],
  '2': [ 4, 12, 24 ],
  '3': [ 10, 14 ] } */

下面是一个使用迭代方法的实际广度优先遍历的示例。

BinarySearchTree.prototype.breadthFirst = function() {

    var result = '',
        queue = [],
        current = this.root;

    if (!current) return null;
    queue.push(current);

    while (current = queue.shift()) {
        result += current.value + ' ';
        current.left && queue.push(current.left);
        current.right && queue.push(current.right);
    }
    return result;
};

console.log('Breadth First: ', bst.breadthFirst());
//Breadth First:  20 8 22 4 12 24 10 14