假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
当前回答
愚蠢的方式:
template<typename T>
struct Node { Node* left; Node* right; T value; };
template<typename T, typename P>
bool searchNodeDepth(Node<T>* node, Node<T>** result, int depth, P pred) {
if (!node) return false;
if (!depth) {
if (pred(node->value)) {
*result = node;
}
return true;
}
--depth;
searchNodeDepth(node->left, result, depth, pred);
if (!*result)
searchNodeDepth(node->right, result, depth, pred);
return true;
}
template<typename T, typename P>
Node<T>* searchNode(Node<T>* node, P pred) {
Node<T>* result = NULL;
int depth = 0;
while (searchNodeDepth(node, &result, depth, pred) && !result)
++depth;
return result;
}
int main()
{
// a c f
// b e
// d
Node<char*>
a = { NULL, NULL, "A" },
c = { NULL, NULL, "C" },
b = { &a, &c, "B" },
f = { NULL, NULL, "F" },
e = { NULL, &f, "E" },
d = { &b, &e, "D" };
Node<char*>* found = searchNode(&d, [](char* value) -> bool {
printf("%s\n", value);
return !strcmp((char*)value, "F");
});
printf("found: %s\n", found->value);
return 0;
}
其他回答
愚蠢的方式:
template<typename T>
struct Node { Node* left; Node* right; T value; };
template<typename T, typename P>
bool searchNodeDepth(Node<T>* node, Node<T>** result, int depth, P pred) {
if (!node) return false;
if (!depth) {
if (pred(node->value)) {
*result = node;
}
return true;
}
--depth;
searchNodeDepth(node->left, result, depth, pred);
if (!*result)
searchNodeDepth(node->right, result, depth, pred);
return true;
}
template<typename T, typename P>
Node<T>* searchNode(Node<T>* node, P pred) {
Node<T>* result = NULL;
int depth = 0;
while (searchNodeDepth(node, &result, depth, pred) && !result)
++depth;
return result;
}
int main()
{
// a c f
// b e
// d
Node<char*>
a = { NULL, NULL, "A" },
c = { NULL, NULL, "C" },
b = { &a, &c, "B" },
f = { NULL, NULL, "F" },
e = { NULL, &f, "E" },
d = { &b, &e, "D" };
Node<char*>* found = searchNode(&d, [](char* value) -> bool {
printf("%s\n", value);
return !strcmp((char*)value, "F");
});
printf("found: %s\n", found->value);
return 0;
}
以下是我的完全递归实现的双向图的广度优先搜索的代码,而不使用循环和队列。
public class Graph { public int V; public LinkedList<Integer> adj[]; Graph(int v) { V = v; adj = new LinkedList[v]; for (int i=0; i<v; ++i) adj[i] = new LinkedList<>(); } void addEdge(int v,int w) { adj[v].add(w); adj[w].add(v); } public LinkedList<Integer> getAdjVerted(int vertex) { return adj[vertex]; } public String toString() { String s = ""; for (int i=0;i<adj.length;i++) { s = s +"\n"+i +"-->"+ adj[i] ; } return s; } } //BFS IMPLEMENTATION public static void recursiveBFS(Graph graph, int vertex,boolean visited[], boolean isAdjPrinted[]) { if (!visited[vertex]) { System.out.print(vertex +" "); visited[vertex] = true; } if(!isAdjPrinted[vertex]) { isAdjPrinted[vertex] = true; List<Integer> adjList = graph.getAdjVerted(vertex); printAdjecent(graph, adjList, visited, 0,isAdjPrinted); } } public static void recursiveBFS(Graph graph, List<Integer> vertexList, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < vertexList.size()) { recursiveBFS(graph, vertexList.get(i), visited, isAdjPrinted); recursiveBFS(graph, vertexList, visited, i+1, isAdjPrinted); } } public static void printAdjecent(Graph graph, List<Integer> list, boolean visited[], int i, boolean isAdjPrinted[]) { if (i < list.size()) { if (!visited[list.get(i)]) { System.out.print(list.get(i)+" "); visited[list.get(i)] = true; } printAdjecent(graph, list, visited, i+1, isAdjPrinted); } else { recursiveBFS(graph, list, visited, 0, isAdjPrinted); } }下面使用Haskell对我来说似乎很自然。在树的各个层次上递归迭代(这里我将名字收集到一个大的有序字符串中,以显示树的路径):
data Node = Node {name :: String, children :: [Node]}
aTree = Node "r" [Node "c1" [Node "gc1" [Node "ggc1" []], Node "gc2" []] , Node "c2" [Node "gc3" []], Node "c3" [] ]
breadthFirstOrder x = levelRecurser [x]
where levelRecurser level = if length level == 0
then ""
else concat [name node ++ " " | node <- level] ++ levelRecurser (concat [children node | node <- level])
设v为起始顶点
设G是问题中的图
下面是不使用队列的伪代码
Initially label v as visited as you start from v
BFS(G,v)
for all adjacent vertices w of v in G:
if vertex w is not visited:
label w as visited
for all adjacent vertices w of v in G:
recursively call BFS(G,w)
Here is a JavaScript Implementation that fakes Breadth First Traversal with Depth First recursion. I'm storing the node values at each depth inside an array, inside of a hash. If a level already exists(we have a collision), so we just push to the array at that level. You could use an array instead of a JavaScript object as well since our levels are numeric and can serve as array indices. You can return nodes, values, convert to a Linked List, or whatever you want. I'm just returning values for the sake of simplicity.
BinarySearchTree.prototype.breadthFirstRec = function() {
var levels = {};
var traverse = function(current, depth) {
if (!current) return null;
if (!levels[depth]) levels[depth] = [current.value];
else levels[depth].push(current.value);
traverse(current.left, depth + 1);
traverse(current.right, depth + 1);
};
traverse(this.root, 0);
return levels;
};
var bst = new BinarySearchTree();
bst.add(20, 22, 8, 4, 12, 10, 14, 24);
console.log('Recursive Breadth First: ', bst.breadthFirstRec());
/*Recursive Breadth First:
{ '0': [ 20 ],
'1': [ 8, 22 ],
'2': [ 4, 12, 24 ],
'3': [ 10, 14 ] } */
下面是一个使用迭代方法的实际广度优先遍历的示例。
BinarySearchTree.prototype.breadthFirst = function() {
var result = '',
queue = [],
current = this.root;
if (!current) return null;
queue.push(current);
while (current = queue.shift()) {
result += current.value + ' ';
current.left && queue.push(current.left);
current.right && queue.push(current.right);
}
return result;
};
console.log('Breadth First: ', bst.breadthFirst());
//Breadth First: 20 8 22 4 12 24 10 14