假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
假设您想递归地实现一个二叉树的宽度优先搜索。你会怎么做?
是否可以只使用调用堆栈作为辅助存储?
当前回答
我想在上面的答案中加上我的观点,如果语言支持生成器之类的东西,bfs可以协递归地完成。
首先,@Tanzelax的回答是:
宽度优先遍历传统上使用队列,而不是堆栈。队列和堆栈的性质几乎是相反的,因此试图使用调用堆栈(因此得名为堆栈)作为辅助存储(队列)几乎是注定要失败的
实际上,普通函数调用的堆栈不会像普通堆栈那样运行。但是生成器函数将暂停函数的执行,因此它给了我们产生下一层节点的子节点的机会,而无需深入研究节点的更深层次的后代。
下面的代码是Python中的递归bfs。
def bfs(root):
yield root
for n in bfs(root):
for c in n.children:
yield c
这里的直觉是:
BFS首先将根作为第一个结果返回 假设我们已经有了BFS序列,BFS中的下一层元素是序列中前一个节点的直接子节点 重复以上两个步骤
其他回答
愚蠢的方式:
template<typename T>
struct Node { Node* left; Node* right; T value; };
template<typename T, typename P>
bool searchNodeDepth(Node<T>* node, Node<T>** result, int depth, P pred) {
if (!node) return false;
if (!depth) {
if (pred(node->value)) {
*result = node;
}
return true;
}
--depth;
searchNodeDepth(node->left, result, depth, pred);
if (!*result)
searchNodeDepth(node->right, result, depth, pred);
return true;
}
template<typename T, typename P>
Node<T>* searchNode(Node<T>* node, P pred) {
Node<T>* result = NULL;
int depth = 0;
while (searchNodeDepth(node, &result, depth, pred) && !result)
++depth;
return result;
}
int main()
{
// a c f
// b e
// d
Node<char*>
a = { NULL, NULL, "A" },
c = { NULL, NULL, "C" },
b = { &a, &c, "B" },
f = { NULL, NULL, "F" },
e = { NULL, &f, "E" },
d = { &b, &e, "D" };
Node<char*>* found = searchNode(&d, [](char* value) -> bool {
printf("%s\n", value);
return !strcmp((char*)value, "F");
});
printf("found: %s\n", found->value);
return 0;
}
如果使用数组来支持二叉树,则可以用代数方法确定下一个节点。如果I是一个节点,那么它的子节点可以在2i + 1(左节点)和2i + 2(右节点)处找到。节点的下一个邻居由i + 1给出,除非i是2的幂
下面是在数组支持的二叉搜索树上实现宽度优先搜索的伪代码。这假设一个固定大小的数组,因此一个固定深度的树。它将查看无父节点,并可能创建难以管理的大堆栈。
bintree-bfs(bintree, elt, i)
if (i == LENGTH)
return false
else if (bintree[i] == elt)
return true
else
return bintree-bfs(bintree, elt, i+1)
下面是递归BFS的Scala 2.11.4实现。为了简洁起见,我牺牲了尾部调用优化,但是TCOd版本非常相似。参见@snv的帖子。
import scala.collection.immutable.Queue
object RecursiveBfs {
def bfs[A](tree: Tree[A], target: A): Boolean = {
bfs(Queue(tree), target)
}
private def bfs[A](forest: Queue[Tree[A]], target: A): Boolean = {
forest.dequeueOption exists {
case (E, tail) => bfs(tail, target)
case (Node(value, _, _), _) if value == target => true
case (Node(_, l, r), tail) => bfs(tail.enqueue(List(l, r)), target)
}
}
sealed trait Tree[+A]
case class Node[+A](data: A, left: Tree[A], right: Tree[A]) extends Tree[A]
case object E extends Tree[Nothing]
}
下面是简短的Scala解决方案:
def bfs(nodes: List[Node]): List[Node] = {
if (nodes.nonEmpty) {
nodes ++ bfs(nodes.flatMap(_.children))
} else {
List.empty
}
}
使用返回值作为累加器的想法是很适合的。 可以在其他语言中以类似的方式实现,只需确保您的递归函数处理的节点列表。
测试代码清单(使用@marco测试树):
import org.scalatest.FlatSpec
import scala.collection.mutable
class Node(val value: Int) {
private val _children: mutable.ArrayBuffer[Node] = mutable.ArrayBuffer.empty
def add(child: Node): Unit = _children += child
def children = _children.toList
override def toString: String = s"$value"
}
class BfsTestScala extends FlatSpec {
// 1
// / | \
// 2 3 4
// / | | \
// 5 6 7 8
// / | | \
// 9 10 11 12
def tree(): Node = {
val root = new Node(1)
root.add(new Node(2))
root.add(new Node(3))
root.add(new Node(4))
root.children(0).add(new Node(5))
root.children(0).add(new Node(6))
root.children(2).add(new Node(7))
root.children(2).add(new Node(8))
root.children(0).children(0).add(new Node(9))
root.children(0).children(0).add(new Node(10))
root.children(2).children(0).add(new Node(11))
root.children(2).children(0).add(new Node(12))
root
}
def bfs(nodes: List[Node]): List[Node] = {
if (nodes.nonEmpty) {
nodes ++ bfs(nodes.flatMap(_.children))
} else {
List.empty
}
}
"BFS" should "work" in {
println(bfs(List(tree())))
}
}
输出:
List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
我必须实现以BFS顺序输出的堆遍历。它实际上不是BFS,但完成了相同的任务。
private void getNodeValue(Node node, int index, int[] array) {
array[index] = node.value;
index = (index*2)+1;
Node left = node.leftNode;
if (left!=null) getNodeValue(left,index,array);
Node right = node.rightNode;
if (right!=null) getNodeValue(right,index+1,array);
}
public int[] getHeap() {
int[] nodes = new int[size];
getNodeValue(root,0,nodes);
return nodes;
}