我如何在Python中制作两个装饰器来完成以下操作?
@make_bold
@make_italic
def say():
return "Hello"
调用say()应返回:
"<b><i>Hello</i></b>"
我如何在Python中制作两个装饰器来完成以下操作?
@make_bold
@make_italic
def say():
return "Hello"
调用say()应返回:
"<b><i>Hello</i></b>"
当前回答
用不同数量的参数修饰函数:
def frame_tests(fn):
def wrapper(*args):
print "\nStart: %s" %(fn.__name__)
fn(*args)
print "End: %s\n" %(fn.__name__)
return wrapper
@frame_tests
def test_fn1():
print "This is only a test!"
@frame_tests
def test_fn2(s1):
print "This is only a test! %s" %(s1)
@frame_tests
def test_fn3(s1, s2):
print "This is only a test! %s %s" %(s1, s2)
if __name__ == "__main__":
test_fn1()
test_fn2('OK!')
test_fn3('OK!', 'Just a test!')
结果:
Start: test_fn1
This is only a test!
End: test_fn1
Start: test_fn2
This is only a test! OK!
End: test_fn2
Start: test_fn3
This is only a test! OK! Just a test!
End: test_fn3
其他回答
考虑下面的修饰符,注意我们将wrapper()函数作为对象返回
def make_bold(func):
def wrapper():
return '<b>'+func()+'</b>'
return wrapper
所以这个
@make_bold
def say():
return "Hello"
计算结果为
x = make_bold(say)
注意,x不是say(),而是在内部调用say(()的包装器对象。这就是装饰师的工作原理。它总是返回调用实际函数的包装器对象。如果链接此
@make_italic
@make_bold
def say():
return "Hello"
转换为此
x = make_bold(say)
y = make_italic(x)
以下是完整的代码
def make_italic(func):
def wrapper():
return '<i>'+func()+'</i>'
return wrapper
def make_bold(func):
def wrapper():
return '<b>'+func()+'</b>'
return wrapper
@make_italic
@make_bold
def say():
return "Hello"
if __name__ == '__main__':
# x = make_bold(say) When you wrap say with make_bold decorator
# y = make_italic(x) When you also add make_italic as part of chaining
# print(y())
print(say())
上述代码将返回
<i><b>Hello</b></i>
希望这有帮助
我如何在Python中制作两个装饰器来完成以下操作?
调用时需要以下函数:
@马克博尔德@使倾斜def say():return“您好”
要返回:
<b><i> 你好</i></b>
简单的解决方案
为了最简单地做到这一点,请制作返回lambdas(匿名函数)的装饰器,这些函数在函数(闭包)上关闭并调用它:
def makeitalic(fn):
return lambda: '<i>' + fn() + '</i>'
def makebold(fn):
return lambda: '<b>' + fn() + '</b>'
现在根据需要使用它们:
@makebold
@makeitalic
def say():
return 'Hello'
现在:
>>> say()
'<b><i>Hello</i></b>'
简单解决方案的问题
但我们似乎几乎失去了最初的功能。
>>> say
<function <lambda> at 0x4ACFA070>
要找到它,我们需要深入研究每个lambda的闭包,其中一个被另一个所掩埋:
>>> say.__closure__[0].cell_contents
<function <lambda> at 0x4ACFA030>
>>> say.__closure__[0].cell_contents.__closure__[0].cell_contents
<function say at 0x4ACFA730>
因此,如果我们将文档放在这个函数上,或者希望能够修饰包含多个参数的函数,或者我们只是想知道在调试会话中看到的是什么函数,那么我们需要对包装器做更多的工作。
全功能解决方案-克服大多数这些问题
我们在标准库中有来自functools模块的修饰符包装!
from functools import wraps
def makeitalic(fn):
# must assign/update attributes from wrapped function to wrapper
# __module__, __name__, __doc__, and __dict__ by default
@wraps(fn) # explicitly give function whose attributes it is applying
def wrapped(*args, **kwargs):
return '<i>' + fn(*args, **kwargs) + '</i>'
return wrapped
def makebold(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
return '<b>' + fn(*args, **kwargs) + '</b>'
return wrapped
不幸的是,仍然有一些样板,但这是我们所能做到的最简单的。
在Python3中,默认情况下还会分配__qualiname__和__annotations__。
现在:
@makebold
@makeitalic
def say():
"""This function returns a bolded, italicized 'hello'"""
return 'Hello'
现在:
>>> say
<function say at 0x14BB8F70>
>>> help(say)
Help on function say in module __main__:
say(*args, **kwargs)
This function returns a bolded, italicized 'hello'
结论
所以我们看到,包装使包装函数几乎可以做所有的事情,除了告诉我们该函数将什么作为参数。
还有其他模块可以尝试解决这个问题,但标准库中还没有解决方案。
查看文档以了解装饰器是如何工作的。以下是您的要求:
from functools import wraps
def makebold(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
return "<b>" + fn(*args, **kwargs) + "</b>"
return wrapper
def makeitalic(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
return "<i>" + fn(*args, **kwargs) + "</i>"
return wrapper
@makebold
@makeitalic
def hello():
return "hello world"
@makebold
@makeitalic
def log(s):
return s
print hello() # returns "<b><i>hello world</i></b>"
print hello.__name__ # with functools.wraps() this returns "hello"
print log('hello') # returns "<b><i>hello</i></b>"
您可以制作两个独立的装饰器,如下图所示。请注意,在wrapped()函数的声明中使用了*args,**kwargs,该函数支持具有多个参数的修饰函数(对于示例say()函数来说,这并不是真正必要的,但为了通用性,它包含在内)。
出于类似的原因,functools.wraps装饰器用于将包装函数的元属性更改为被装饰函数的元特性。这使得错误消息和嵌入函数文档(func.__doc__)成为修饰函数的错误消息,而不是wrapped()的错误消息。
from functools import wraps
def makebold(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
return "<b>" + fn(*args, **kwargs) + "</b>"
return wrapped
def makeitalic(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
return "<i>" + fn(*args, **kwargs) + "</i>"
return wrapped
@makebold
@makeitalic
def say():
return 'Hello'
print(say()) # -> <b><i>Hello</i></b>
精炼
正如您所看到的,这两个装饰器中有很多重复的代码。考虑到这种相似性,您最好创建一个实际上是装饰器工厂的通用函数,换句话说,一个生成其他装饰器的装饰器函数。这样可以减少代码重复,并允许遵循DRY原则。
def html_deco(tag):
def decorator(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
return '<%s>' % tag + fn(*args, **kwargs) + '</%s>' % tag
return wrapped
return decorator
@html_deco('b')
@html_deco('i')
def greet(whom=''):
return 'Hello' + (' ' + whom) if whom else ''
print(greet('world')) # -> <b><i>Hello world</i></b>
为了使代码更可读,可以为工厂生成的装饰器指定一个更具描述性的名称:
makebold = html_deco('b')
makeitalic = html_deco('i')
@makebold
@makeitalic
def greet(whom=''):
return 'Hello' + (' ' + whom) if whom else ''
print(greet('world')) # -> <b><i>Hello world</i></b>
甚至可以这样组合:
makebolditalic = lambda fn: makebold(makeitalic(fn))
@makebolditalic
def greet(whom=''):
return 'Hello' + (' ' + whom) if whom else ''
print(greet('world')) # -> <b><i>Hello world</i></b>
效率
虽然上面的示例都能完成所有工作,但当同时应用多个修饰符时,生成的代码会以外部函数调用的形式产生大量开销。这可能无关紧要,具体取决于确切的用法(例如,可能是I/O绑定的)。
如果修饰函数的速度很重要,那么可以通过编写一个稍微不同的修饰器工厂函数来保持单个额外函数调用的开销,该函数实现一次添加所有标记,从而可以生成代码,避免对每个标记使用单独的修饰器而导致的额外函数调用。
这需要在decorator本身中有更多的代码,但这只在将其应用于函数定义时运行,而不是在稍后调用它们本身时运行。这也适用于通过使用前面所示的lambda函数创建更可读的名称时。示例:
def multi_html_deco(*tags):
start_tags, end_tags = [], []
for tag in tags:
start_tags.append('<%s>' % tag)
end_tags.append('</%s>' % tag)
start_tags = ''.join(start_tags)
end_tags = ''.join(reversed(end_tags))
def decorator(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
return start_tags + fn(*args, **kwargs) + end_tags
return wrapped
return decorator
makebolditalic = multi_html_deco('b', 'i')
@makebolditalic
def greet(whom=''):
return 'Hello' + (' ' + whom) if whom else ''
print(greet('world')) # -> <b><i>Hello world</i></b>
装饰只是语法上的糖。
This
@decorator
def func():
...
扩展到
def func():
...
func = decorator(func)