下面是我生成一个数据框架的代码:

import pandas as pd
import numpy as np

dff = pd.DataFrame(np.random.randn(1,2),columns=list('AB'))

然后我得到了数据框架:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|
+------------+---------+--------+

当我输入命令时:

dff.mean(axis=1)

我得到:

0    1.074821
dtype: float64

根据pandas的参考,axis=1代表列,我希望命令的结果是

A    0.626386
B    1.523255
dtype: float64

我的问题是:轴在熊猫中是什么意思?


当前回答

轴在编程中是形状元组中的位置。这里有一个例子:

import numpy as np

a=np.arange(120).reshape(2,3,4,5)

a.shape
Out[3]: (2, 3, 4, 5)

np.sum(a,axis=0).shape
Out[4]: (3, 4, 5)

np.sum(a,axis=1).shape
Out[5]: (2, 4, 5)

np.sum(a,axis=2).shape
Out[6]: (2, 3, 5)

np.sum(a,axis=3).shape
Out[7]: (2, 3, 4)

轴上的均值将导致该维度被移除。

参考原题,dff形状为(1,2)。使用axis=1将形状更改为(1,)。

其他回答

记住轴1(列)与轴0(行)的简单方法之一是您期望的输出。

如果你希望每行都有输出,使用axis='columns', 另一方面,如果你想为每一列输出,你可以使用axis='rows'。

这里的许多答案对我帮助很大!

如果你对Python中的axis和R中的MARGIN的不同行为感到困惑(比如在apply函数中),你可以找到我写的一篇感兴趣的博客文章:https://accio.github.io/programming/2020/05/19/numpy-pandas-axis.html。

从本质上讲:

Their behaviours are, intriguingly, easier to understand with three-dimensional array than with two-dimensional arrays. In Python packages numpy and pandas, the axis parameter in sum actually specifies numpy to calculate the mean of all values that can be fetched in the form of array[0, 0, ..., i, ..., 0] where i iterates through all possible values. The process is repeated with the position of i fixed and the indices of other dimensions vary one after the other (from the most far-right element). The result is a n-1-dimensional array. In R, the MARGINS parameter let the apply function calculate the mean of all values that can be fetched in the form of array[, ... , i, ... ,] where i iterates through all possible values. The process is not repeated when all i values have been iterated. Therefore, the result is a simple vector.

我对熊猫还是个新手。但这是我对熊猫轴的理解:


恒变方向


0列行向下|


1行列向右——>


所以要计算一列的均值,这一列应该是常数,但它下面的行可以改变(变化)所以它是axis=0。

类似地,要计算一行的平均值,特定的行是常数,但它可以遍历不同的列(变化),axis=1。

在Pandas上有两种最常见的axis用法:

用作索引,如df。iloc [0, 1] 用作函数内的参数,如df.mean(axis=1)

当使用作为索引时,我们可以解释为axis=0代表行,axis=1代表列,即df。iloc(行、列)。所以,df。Iloc[0,1]表示从第0行和第1列中选择数据,在本例中,它返回1.52325。

当使用作为参数时,axis=0表示垂直跨行选择对象,而axis=1表示水平跨列选择对象。

因此,df.mean(axis=1)表示水平计算跨列的平均值,它返回:

0    1.074821
dtype: float64

轴的一般用途是用于选择要操作的特定数据。而理解轴的关键,是把“选择”和“操作”的过程分开。

我们用一种额外的情况来解释:df。下降(A轴= 1)

该操作是df.drop(),它需要目标对象的名称 列,在这里是A。它和df。mean()不一样 对数据内容进行操作。 选择的是列的名称,而不是列的数据内容。由于所有列名都是水平排列在列之间的,所以我们使用axis=1来选择name对象。

总之,我们最好把“选择”和“操作”分开,对以下问题有一个清晰的认识:

选择什么对象 是怎么安排的

这些答案确实有助于解释这一点,但对于非程序员(例如,像我这样第一次在数据科学课程背景下学习Python的人)来说,它仍然不是完全直观的。我仍然发现使用术语“沿着”或“每个”wrt的行和列是令人困惑的。

对我来说更有意义的是这样说:

轴0将作用于每个COLUMN中的所有row 轴1将作用于每个ROW中的所有COLUMNS

0轴上的均值是每列中所有行的均值,1轴上的均值是每行中所有列的均值。

从根本上说,这和@zhangxaochen和@Michael的意思是一样的,只是用一种更容易让我内化的方式。